三角函數

數學之旅:三角形面積公式(I)

數學之旅:三角形面積公式(I)
(Mathematical Journey through the Formulas of Triangle Area)

國立蘭陽女中陳敏晧教師

三角形面積公式是數學中面最常用的公式,也是大家在小學學數學的甜蜜記憶。

希臘哲人柏拉圖曾說:「畫在沙地上的三角形可以被抹去,但是,三角形的觀念不會受時間與空間的限制而留存下來。」可見三角形的觀念與發展會隨著人類數學發展而不斷變化。但是,不論如何演變,數學的新論點卻永遠根植於舊有的基礎上。

從個人學習數學的歷程看來,三角形的面積公式就如同是典範(paradigm)般的重要。我們可以透過公式的演變來重新釐清學習的轉移(shift);當吾人從數學史的知識論脈絡切入,會發現三角形的面積公式從幾何學出發,邁向三角學領域,接引向量,拓展行列式,認識內積與外積,於解析幾何處發揚光大。

從複數到三角函數公式(II) (From complex number to trigonometric function formulas)

從複數到三角函數公式(II) (From complex number to trigonometric function formulas)
國立蘭陽女中陳敏晧教師

連結:從複數到三角函數公式(I) 

證明:

(1) \(\displaystyle\sin \theta+ \sin 2\theta+\cdots+ \sin n\theta= \frac{{\sin \frac{{(n + 1)\theta }}{2} \cdot \sin \frac{{n\theta }}{2}}}{{\sin \frac{\theta }{2}}}\)

(2) \(\displaystyle\cos \theta+\cos 2\theta+\cdots+ \cos n\theta= \frac{{\sin \frac{{n\theta }}{2}\cos \frac{{(n + 1)\theta }}{2}}}{{\sin \frac{\theta }{2}}}\)

第二種證明方法:利用複數的概念。

我們可以使用歐拉公式 \({e^{i\theta }}= \cos \theta+ i\sin \theta\),

若將 \(\theta\) 以 \(-\theta\) 代入可得 \({e^{ – i\theta }}= \cos \theta- i\sin \theta\),

可得 \(\left\{ \begin{array}{l}\displaystyle \cos \theta= \frac{{{e^{i\theta }}+ {e^{ – i\theta }}}}{2}\\\displaystyle\sin \theta = \frac{{{e^{i\theta }}-{e^{ – i\theta }}}}{{2i}} \end{array} \right.\),變換變數得 \(\left\{ \begin{array}{l}\displaystyle\cos \frac{\theta }{2} = \frac{{{e^{\frac{{i\theta }}{2}}} + {e^{\frac{{ – i\theta }}{2}}}}}{2}\\\displaystyle\sin \frac{\theta }{2} = \frac{{{e^{\frac{{i\theta }}{2}}} – {e^{\frac{{ – i\theta }}{2}}}}}{{2i}} \end{array} \right.\)

從複數到三角函數公式(I) (From complex number to trigonometric function formulas)

從複數到三角函數公式(I) (From complex number to trigonometric function formulas)
國立蘭陽女中陳敏晧教師

複數在數學各領域均有重大影響,本文章將討論如何以複數的形式來證明三角函數的相關公式,由於複數具有極坐標形式,可以將角度做旋轉、長度做伸縮變換,這是傳統幾何學在直角坐標平面難以突破的面向,因此,利用複數來證明三角函數公式往往會有意想不到的收穫,也常使學習者見識到數學之美!

本文將使用到歷史法國數學家棣美弗(Abraham de Moivre, 1667-1754)於1730年發表的棣莫弗公式,即若 \(z = r(\cos \theta+ i\sin \theta)\),則 \({z^n} = {r^n}(\cos n\theta+ i\sin n\theta ),n \in Z\)。

及歐拉(Leonhard Euler, 1707-1783)在1748年所發表的歐拉公式:\({e^{i\theta }} = \cos \theta+ i\sin \theta\)。

和算裡的弧長之冪級數公式(二)(The formula of arc length in the form of power series in Wasan Ⅱ)

和算裡的弧長之冪級數公式(二)
(The formula of arc length in the form of power series in Wasan Ⅱ)

臺北市立和平高中黃俊瑋教師

連結:和算裡的弧長之冪級數公式(一)

〈和算裡的弧長之冪級數公式(一)〉裡,介紹了和算家建部賢弘所造的弧長冪級數公式,本文中,我們將以建部賢弘所用的方法為例,說明當時的數學家如何造出與弧長相關的正確冪級數公式。

建部賢弘《綴術算經》書中所提出的第十二個問題為「探弧數」,當中他詳細地說明了如何造出弧長公式的方法。假設圓直徑為一尺,欲求某段「弧長之半的平方」之值,建部賢弘首先「截矢一忽之弧二斜,次截造四斜,次截造八斜,次截造十六斜,逐如此倍截之數,求各截半背冪,依累遍增約術,得定半背冪。」這裡他先利用了割圓的方式,計算出弧長的近似值,再以他發明的數值逼近方法「累遍增約術」,求得弧長近似值五十餘位,並稱之為「定半背冪」。

換句話說,上述定半背冪 \((\frac{s}{2})^2\) 這個數值,是建部賢弘所計算出,並認定正確的弧長近似值。
接著,建部據此數值,反過來探求弧長之冪級數公式。

和算裡的弧長之冪級數公式(一)(The formula of arc length in the form of power series in Wasan Ⅰ)

和算裡的弧長之冪級數公式(一)
(The formula of arc length in the form of power series in Wasan Ⅰ)

臺北市立和平高中黃俊瑋教師

早在中國漢朝《九章算術》裡,便出現了圓面積及弓形面積公式,然而,後者所給的僅是近似公式。隨著中算書的傳入,江戶時期日本數學家們對於圓周率與弧長公式的研究,卻深感興趣。前者顯然受到中國的影響,後者卻是十足的和算產物。譬如說吧,十七世紀初期,今村知商的《豎亥錄》(1639)就提出了新的弧長公式(其中,我們以 \(R\) 表示圓之直徑、\(c\) 表示弦、\(a\) 表示矢、以 \(s\) 表示弧長):

\(s = \sqrt {(R + \frac{a}{2}) \cdot 4a}\)

當然,這同樣也只是近似公式。若我們進一步考察和算早期發展過程所出現的弧長公式,多與

\(s = \sqrt {{c^2} + ({\pi ^2} – 4){a^2}}\)

半角公式(Half-Angle Formulas)

半角公式(Half-Angle Formulas)
臺北市立第一女子中學數學科蘇俊鴻老師

一般說來,半角公式的推導常是透過倍角公式。由於

\(\cos 2\alpha= {\cos ^2}\alpha- {\sin ^2}\alpha= 2{\cos ^2}\alpha-1=1-2{\sin^2}\alpha\)

因此,

\({\sin^2}\alpha=\frac{{1 – \cos 2\alpha}}{2},{\cos^2}\alpha=\frac{{1+\cos 2\alpha}}{2}\)

令 \(\theta=2\alpha\Rightarrow \alpha=\frac{\theta}{2}\) 代入,即得

\(\sin \frac{\theta }{2} =\pm\sqrt {\frac{{1 -\cos\theta}}{2}} ,\cos\frac{\theta}{2} = \pm\sqrt{\frac{{1 + \cos \theta}}{2}} \)

其中 \(\pm\) 依 \(\frac{\theta}{2}\) 所在的象限決定。至於倍角公式,則是由和角公式推得。
換言之,公式推導的順序是和角公式→倍角公式→半角公式。

然而,當我們檢視托勒密天文學集大成的著作《The Almagest》,他在為製作弦表所提出的一系列命題中,半角公式竟然比和角公式還要更早提出!

倍角公式(II) (Double-angle Formulas)

倍角公式(II) (Double-angle Formulas)
國立蘭陽女中數學科陳敏晧老師

連結:倍角公式(I)

三角函數中的倍角公式,主要有兩類,一類是二倍角公式,一類是三倍角公式,其中二倍角公式主要有:

  1. \(\sin 2\theta= 2\sin \theta \cos \theta\)
  2. \(\cos 2\theta= {\cos ^2}\theta- {\sin ^2}\theta= 2{\cos ^2}\theta- 1 = 1 – 2{\sin ^2}\theta\)
  3. \(\displaystyle\tan 2\theta= \frac{{2\tan \theta }}{{1 – {{\tan }^2}\theta }}\)

這些公式的證明主要是利用正弦與餘弦的和差角公式:

\(\sin \left( {\alpha+ \beta } \right)= \sin \alpha\cos \beta+ \cos \alpha \sin \beta \\\cos \left( {\alpha+ \beta } \right) = \cos \alpha \cos \beta- \sin \alpha \sin \beta\)

若 \(\alpha=\beta=\theta\),則 \(\sin 2\theta= \sin \theta \cos \theta+ \cos \theta \sin \theta= 2\sin \theta \cos \theta\),

\(\begin{array}{ll}\cos 2\theta &= \cos \theta \cos \theta- \sin \theta \sin \theta\\&= {\cos ^2}\theta- {\sin ^2}\theta= {\cos ^2}\theta- (1 – {\cos ^2}\theta ) \\&= 2{\cos ^2}\theta- 1 = 2(1- {\sin ^2}\theta ) – 1 = 1 – 2{\sin ^2}\theta\end{array}\)

半角公式(II)

半角公式(II) (Half-angle Formulas)
國立蘭陽女中數學科陳敏晧老師

連結: 半角公式(I)

在1580年左右,法國代數學家維塔(François Viète,1540-1603)

曾經提出一個漂亮的正切函數半角公式:$$\displaystyle\frac{{a + b}}{{a – b}} = \frac{{\tan \left( {\frac{{A + B}}{2}} \right)}}{{\tan \left( {\frac{{A – B}}{2}} \right)}}$$。

證明的方法是利用正弦定理及和差化積公式:

$$\begin{array}{ll}\displaystyle\frac{{a + b}}{{a – b}} &=\displaystyle \frac{{2R\sin A + 2R\sin B}}{{2R\sin A – 2R\sin B}} = \frac{{\sin A + \sin B}}{{\sin A – \sin B}} \\&=\displaystyle \frac{{2\sin \left( {\frac{{A + B}}{2}} \right)\cos \left( {\frac{{A – B}}{2}} \right)}}{{2\sin \left( {\frac{{A – B}}{2}} \right)\cos \left( {\frac{{A + B}}{2}} \right)}}=\displaystyle \frac{{\sin \left( {\frac{{A + B}}{2}} \right)/\cos \left( {\frac{{A + B}}{2}} \right)}}{{\sin \left( {\frac{{A – B}}{2}} \right)/\cos \left( {\frac{{A – B}}{2}} \right)}} \\&=\displaystyle \frac{{\tan \left( {\frac{{A + B}}{2}} \right)}}{{\tan \left( {\frac{{A – B}}{2}} \right)}}\end{array}$$

半角公式(I)

半角公式(I) (Half-angle Formulas)
國立蘭陽女中數學科陳敏晧老師

三角函數中的半角公式:

\(\displaystyle\sin\frac{\theta}{2}=\pm \sqrt{\frac{{1-\cos\theta }}{2}}\) (\(\pm\) 號依 \(\displaystyle\frac{\theta}{2}\)在第幾象限而定)

\(\displaystyle\cos\frac{\theta}{2}=\pm \sqrt{\frac{{1+\cos\theta }}{2}}\) (\(\pm\) 號依 \(\displaystyle\frac{\theta}{2}\)在第幾象限而定)

\(\displaystyle\tan \frac{\theta }{2}=\pm\sqrt {\frac{{1-\cos \theta }}{{1+\cos \theta }}}= \frac{{\sin \theta }}{{1+ \cos \theta }}= \frac{{1- \cos \theta }}{{\sin\theta }}= \frac{{1+\sin \theta- \cos \theta }}{{1+ \sin \theta+ \cos \theta }}\)

上述半角公式的證明是根據二倍角公式:\(\cos 2\alpha= 2{\cos^2}\alpha- 1= 1- 2{\sin^2}\alpha\),

令 \(2\alpha=\theta\) 即 \(\displaystyle\alpha=\frac{\theta}{2}\),移項得 \(\displaystyle 2{\cos ^2}\frac{\theta }{2} = 1+\cos\theta ,2{\sin ^2}\frac{\theta }{2} = 1 -\cos \theta\),

再移項及開平方得 \(\displaystyle\sin \frac{\theta }{2}=\pm\sqrt{\frac{{1-\cos\theta }}{2}}\),\(\displaystyle\cos \frac{\theta }{2}=\pm\sqrt{\frac{{1+\cos\theta }}{2}}\),

將兩式相除得 \(\displaystyle\tan \frac{\theta }{2} = \frac{{\sin \frac{\theta }{2}}}{{\cos \frac{\theta }{2}}}=\frac{{\pm\sqrt {\frac{{1 -\cos \theta }}{2}} }}{{\pm\sqrt {\frac{{1 + \cos \theta }}{2}} }} =\pm\sqrt {\frac{{1 – \cos \theta }}{{1 + \cos \theta }}}\),

Pages