萊布尼茲

從牛頓的時代背景探索第二運動定律(下)

從牛頓的時代背景探索第二運動定律(下)
行政院科技部科技顧問/瑞典林雪平大學榮譽教授 趙光安

連結:從牛頓的時代背景探索第二運動定律(上)

牛頓給力一個定義:第二運動定律

在伽利略和牛頓的時代,數學工具只有幾何、三角、和代數,物理知識也僅限日常生活中有系統的觀察,及少數的實驗結果。用現代的標準來衡量,伽利略和牛頓頂多只有國中畢業的程度。如果我們用現代的數理常識背景來解答三、四百年前的問題,那就是「事後有先見之明」了。雖然和「力學」有關的量測,伽利略得到的數據被推崇是權威性,然而他的「力學」實驗幾乎全部是基於物體的直線運動。在這個時代背景下,牛頓建立的理論,是從「一維系統」開始,然後才推廣到「三維空間」。因此,我們也從直線運動開始,試試看能否經歷一趟牛頓的思路。

行列式的濫觴:萊布尼茲 (2)(The Beginnings of Determinants: Leibniz (2))

行列式的濫觴:萊布尼茲 (2)(The Beginnings of Determinants: Leibniz (2))
國立臺南第一高級中學林倉億老師

連結:行列式的濫觴:萊布尼茲 (1)(The Beginnings of Determinants: Leibniz (1))

在〈行列式的濫觴:萊布尼茲 (1)〉中,介紹了萊布尼茲透過所創立的數字符號,寫出三個二元一次方程式有共同解的條件,也就是相當於今日行列式的展開式。可惜的是,萊布尼茲與羅必達的通信,直到1850年才公開。在此之前,其他數學家並不知道萊布尼茲在這方面的成就。事實上,萊布尼茲是有意要隱瞞他的發現的,根據1863年公布的史料看來,萊布尼茲可能早在1678年就已經寫出這些結論,但一直把它當作祕密保守著。無怪乎,他會在信中向羅必達表示從未向其他人透露過這個巨大的發現。

利用係數來討論方程式的解,萊布尼茲並非第一人。事實上,無論是韋達還是笛卡兒,都有這方面的成果。不過,萊布尼茲獨特之處在於利用兩個足標來表示係數,這對以後無論是行列式或是矩陣理論的一般化提供了有利的工具。雖然他與羅必達的通信在1850年才公開,但他在1700-1710年間出版的兩份文件中,就已展現這種符號的使用。

行列式的濫觴:萊布尼茲 (1)(The Beginnings of Determinants: Leibniz (1))

行列式的濫觴:萊布尼茲 (1)(The Beginnings of Determinants: Leibniz (1))
國立臺南第一高級中學林倉億老師

在本網站的文章中,中央大學單維彰老師的〈行列式的故事〉已簡略地介紹行列式發展歷史的大略,接下來這系列的文章,就是為它補上一些細節。首先登場的,就是萊布尼茲 (Gottfried Wilhelm von Leibniz, 1646-1716)。

1693年4月28日萊布尼茲寫給羅必達 (Guillaume François Antoine Marquis de L’Hôpital, 1661-1704)的信中,開門見山地寫道:

我一定沒有解釋得很清楚,所以你才會說你難以相信可以使用數字取代字母,像字母一般且便利的使用。如果允許將2、3等當作ab來使用,而不是當作真的數字,那它的一般性就是無庸置疑的。以此方式,就不是6,而是ab。至於便利性,正是因為便利,所以我本身經常使用它們,特別是易於犯錯的冗長且困難的計算中。因為除了具備用數字來檢驗的便利性外,甚至是用「去9法」(註一)來檢驗,我還發現使用上有一個很大的好處,就是分析。雖然這是十分巨大的發現,但我還沒有告訴任何人,以下就是這個發現。

從這封信中可看出用文字符號來的使用在當時已經是十分自然的事了,現在萊布尼茲要反其道而行,用數字來代替文字,所以,羅必達在上封信中表達了自己的疑惑。由此,也可以看出,住在法國的羅必達透過信件往返,與身在日耳曼的萊布尼茲在數學上進行跨國交流。再者,羅必達對萊布尼茲來說,必定是相當在意的人,不然,萊布尼茲怎會透露自己的巨大發現,還強調從沒告訴過任何人。無論是搞神祕還是故意吹噓,都達到引人一探究竟的效果。

由問題的起源看導數的定義II

由問題的起源看導數的定義II
臺北市立西松高中 蘇惠玉教師

連結:由問題的起源看導數的定義I

在前一篇文章中,我們已經看過費馬求極值的方法了,也就是當 \(e\) 是個很微小的量時(亦即趨近於 \(0\)),讓 \(\frac{f(a+e)-f(a)}{e}\) 這個值「盡可能的逼近」\(0\)。

接下來我們來看看牛頓求切線的方法。

牛頓求切線的方法

下面的方法出現在牛頓的《曲線求積術》,撰寫於 1693 年,並於 1704 年作為《光學》一書的附錄正式發表。牛頓以求切線的策略與方法,說明他的「流數方法(即求導數的方法)」,並舉函數為 \(y=x^n\) 為例,實際演練操作他的方法。

微積分基本定理

在高中數學課程中,微積分內容的引進通常僅止於簡單的微分與積分之計算,相當可以呼應calculus一詞的意義。至於有關極限的概念,大概都是通過切線的直觀意義之說明。如此一來,微積分基本定理的重大意義就變得隱晦不彰,從而牛頓與萊布尼茲各自獨立地對微積分的巨大貢獻,也就難以深刻體會了。 事實上,即使在運算層次,微分與積分這兩個可逆運算的理論聯繫,也總是需要微積分基本定理才能說得明白。一般來說,這個定理有兩種形式...