原子鐘

原子鐘發展背景與現況及高精度時鐘在基礎科學扮演的角色

原子鐘 (Atomic clock) 發展背景與現況及高精度時鐘在基礎科學扮演的角色
東京大學理學博士黃郁珊編譯/國立臺灣大學科學教育發展中心陳藹然博士責任編輯

自古以來時間的計時依賴的是規律而週期的變化,比如說每天的日升日落。後來人類發明了機械式的鐘擺時鐘,其準度可達10-5。而較晚發明的石英振盪器所產生的電子振盪訊號可到達10-9的穩定度,使之成為原子鐘發明前最精準的計時方式。由於傳統的鐘擺或是電子振盪器的頻率易受環境條件的強烈影響(例如溫度、濕度、材質老化等等),使得他們的計時精確度無法得到進一步的突破。相對地,原子內部能階的躍遷頻率 (transition frequency) 基本上取決於各種基本常數因而具有極小的環境影響參數。因此,原子的內部躍遷頻率成為極有價值的計時參考源。自1950年以來原子鐘就成為世界上最準的計時儀器。

目前世界上最精準的時鐘-光晶格光頻原子鐘在低溫環境下的突破

目前世界上最精準的時鐘-光晶格光頻原子鐘在低溫環境下的突破

目前世界上最精準的時鐘-光晶格光頻原子鐘在低溫環境下的突破
東京大學理學博士黃郁珊編譯/國立臺灣大學科學教育發展中心陳藹然博士責任編輯

編譯來源:次世代時間標準「光格子時計」の高精度化に成功(科学技術振興機構(JST) 2月10日新聞稿)

東京大學香取秀俊教授的研究團隊在2015年二月份的《自然光子學期刊》 (Nature Photonics) 發表他們的光晶格光頻原子鐘的研究成果,該研究團隊成功地打造兩台以鍶原子為基礎的最先進光頻原子鐘(如圖一),藉由兩台原子鐘的互相比較,證明其相對誤差在2×10-18的範圍內,相當於兩台時鐘須花160億年才會產生1秒的相對誤差。此外,透過系統分析,這兩台原子鐘的不準確度(inaccuracy)為7.2×10-18,這是世界上首次的成果,相較於目前用來定義「秒」的微波銫原子鐘,其準確度高了一百倍。

災害監測科技 GPS─窮人的原子鐘

災害監測科技 GPS─窮人的原子鐘
國立臺灣大學土木工程研究所林以淳

對處於板塊交界地帶、人口密度高的台灣而言,地震災害所帶來的危害不容小覷,相關的監測、研究工作不勝枚舉,隨著科技進步,使用工具也一直在改進。

以國內外地震測報單位建置的設備為例,全球定位系統(Global Positioning System, GPS)除了以精準的定位作為長期地殼變動監測的主力之外,亦可作為即時地震觀測網之中地震儀的校時設備。透過 GPS 的校時功能,使分布於各地的測站的時間系統與衛星上的原子鍾時間同步,獲取精準且一致的時間系統。