對角方陣

從特徵值、特徵向量到凱萊─漢米爾頓定理、矩陣的對角化(From Eigenvalues and Eigenvectors to Cayley-Hamilton Theorem and the Matrix Diagonalization)

從特徵值、特徵向量到凱萊─漢米爾頓定理、矩陣的對角化(From Eigenvalues and Eigenvectors to Cayley-Hamilton Theorem and the Matrix Diagonalization)
國立臺南第一高級中學數學科林倉億老師

特徵值與特徵向量

在〈矩陣乘法的限制及性質〉一文中,我們知道矩陣乘法的特殊性開啟了許多的可能性,比如說兩個均不為零方陣的同階方陣,相乘之後竟然可以是零方陣。接下來我們要看的是矩陣乘法的另一種重要應用,讓我們先從簡單的二階方陣看起。

給定方陣 \(A = \left[ {\begin{array}{*{20}{c}} 1&4\\ 3&2 \end{array}} \right]\),哪些 \(2\times 1\) 階矩陣 \(X = \left[ {\begin{array}{*{20}{c}} {{x_{1}}}\\ {{x_{2}}} \end{array}} \right]\) 會滿足 \(A \cdot X = \lambda\cdot X\),

其中 \(\lambda\) 是實數,而非矩陣。

方程式 \(A \cdot X =\lambda\cdot X\) 的意義就是 \(X\) 在乘以 \(A\) 之後,會變成原來的 \(\lambda\) 倍。