排容原理

交換禮物中的機率問題(The probability of exchanging gifts)

交換禮物中的機率問題(The probability of exchanging gifts)
臺北市立和平高中黃俊瑋教師

每到聖誕節時,許多人喜歡舉辦交換禮物活動,假設總共有 \(n\) 個人參與,規定每個人各自帶來一件禮物,收集所有人的禮物後,便將禮物貼上編號,每個人再從中隨機抽出一樣禮物帶回家。總有人幸運地抽中自己心儀的禮物,也似乎常會有人不幸地抽中自己所帶來的禮物,真的是這個人運氣不好嗎?再者,若參與的每個人都沒有抽中自己的禮物是正常的嗎?

首先,我們從簡單的情況開始討論起。

當 \(n=1\) 時,必定拿回自己的禮物,所以機率為 \(P(A_1)=1\)(不過,一般應該沒有人自己和自己交換禮物)。

當 \(n=2\) 時,假設有 \(A_1\) 與 \(A_2\) 兩個人,各拿出 \(G_1\) 與 \(G_2\) 兩個禮物。
這時,想像隨機將 \(G_1\) 與 \(G_2\) 兩個禮物排列,其中的第一個位置代表 \(A_1\) 的禮物、第二個位置代表 \(A_2\) 的禮物,則有 \(G_1G_2\) 和 \(G_2G_1\) 兩種可能性。
換句話說,要嘛兩個人都拿到對方帶來的禮物,要嘛拿回自己禮物,而且兩者機率相同,因此,有拿回自己禮物的機率為 \(P(A_1\cup A_2)=\frac{1}{2!}\),其中 \(P(A_1\cup A_2)\) 指的是 \(A_1\) 或 \(A_2\) 拿回自己禮物的機率。

如何計算紅球先取完的機率?

如何計算紅球先取完的機率?
(How to calculate the probablity of taking all the red balls first ?)

國立蘭陽女中陳敏晧教師

排列組合教學過程中,有一個值得討論的議題:「如何計算紅球先取完的機率?」
先從兩種不同顏色球的討論開始:

例1:

袋中有三個紅球與兩個白球,今從袋中每次取一球,取後不放回,請問紅球比白球先取完的機率?

解法:

因為紅球先取完,所以,最後一球必定是白球,因此,
\( P(\text{紅球比白球先取完})= \displaystyle\frac{{\frac{{4!}}{{3! \times 1!}}}}{{\frac{{5!}}{{3! \times 2!}}}} = \frac{2}{5} = \frac{2}{{3 + 2}} = \frac{W}{{R + W}}\),
其中 \(R\) 代表紅球的個數,\(W\) 代表白球的個數。

接著,透過排容原理(Inclusion–exclusion principle)或取捨原理,

如下圖一與圖二所示,可以將問題延伸。

機率法則 (Principle of Probability) (二)

機率法則 (Principle of Probability) (二)
國立屏東高級中學數學科楊瓊茹老師

連結:機率法則 (Principle of Probability) (一)

1993年美國奧克拉荷馬州突沙市 (Tulsa, Oklahoma) 法庭根據DNA鑑定報告等相關證物,判決提摩西‧杜朗犯下強暴與強盜罪。即便有十一個證人作證在案發時,提摩西正在達拉斯州參加飛靶射擊比賽,但是犯罪現場採得的DNA卻與提摩西的DNA吻合,在這項強力的證據下,求處刑期3200年。

究竟DNA鑑定比對的準確率有多高?高達 $$999,999/1,000,000$$ !隨便一個人的DNA與犯罪現場的採樣相同的機率小於百萬分之一,甚至是億萬分之一,相同的可能性可以說是微乎其微。

排容原理(Principle of Inclusion and Exclusion)(一)

排容原理(Principle of Inclusion and Exclusion)(一)
國立高雄大學應用數學系游森棚副教授責任編輯

排容原理( Principle of Inclusion and Exclusion, 簡稱PIE),是高中排列組合的第三個,也是最後一個基礎原理(前兩個是「乘法原理(Rule of Product)」與「加法原理 (Rule of Sum)」) 亦有一些書按英文順序直譯為容斥原理(或許這是比較好的翻譯)。

排容原理中的「排」 是指「排除」,「容」是指「容納」。 基本上的想法就是「多退少補」 — 多算的要排除,少算的要加進來。從原文亦可以清楚看出這個原理的精神。