費曼圖

路徑積分與費曼圖(下)

路徑積分與費曼圖(下)
蕭維翰

連結:路徑積分與費曼圖(上)

1965 年的諾貝爾獎得主,由左至右為 Tomonaga, Schwinger, and Feynman, credit: Photos: Copyright © The Nobel Foundation “The Nobel Prize in Physics 1965”. Nobelprize.org. Nobel Media AB 2014.

在前文中筆者指出,路徑積分在發明之際主要是作為另一種計算給定物理過程所對應躍遷振幅的方法,費曼圖是物理過程的圖像表示,當畫出一個費曼圖,原則上我們能夠將它拆解成一些小過程,而每個小過程可由費曼規則對應到某個數學式,也就是我們所求的答案。

在費曼的工作之前,儘管人們已經知道了在量子場論中進行這種計算的方法,但當時,這幾乎是只有最頂尖的理論物理學家才能進行的計算,而今任何一個研究所水平的物理本科生幾乎都能進行最簡單的微擾理論計算。

路徑積分與費曼圖(上)

路徑積分與費曼圖(上)
蕭維翰

本次費曼專題筆者希望透過兩篇文章談論費曼的路徑積分與費曼圖,作為費曼科學工作的代表。而本文將側重於路徑積分,並在結尾引出費曼圖。

但在科學開始之前,筆者必須承認,一直以來,我認為談論費曼的科學工作不是簡單的事。困難處不在於那些科學技術上的深澀,反在於它們的基礎性與普世性,在沒有獨樹一幟的新見解前,這個世界需不需要多一篇介紹費曼學術成就的科普文?

筆者相信在 CASE 的多年耕耘下,讀者們對於路徑積分或多或少都有所耳聞。科普界亦已有許多談論路徑積分的文章,絕大多數都會以光子或電子的雙狹縫干涉實驗為物理動機進行說明,以一個科學工作者的角度來看,這的確不失為好的介紹方式——首先提出實驗可想見實現的物理情境,接著嘗試利用物理直覺猜測可能的結果,再以意料之外的真實現象誘使讀者思考,最後說明迄今人類對於此問題的理解,並抽象化成為整個量子理論的指導原則。