catalysis

追求不再貴重的催化之路

追求不再貴重的催化 (catalysis)之路
國立臺灣大學化學系名譽教授蔡蘊明

現代人類的生活和文明離不開化學,化學品的製造經常隨伴著副產物的產生,這些副產物若不謹慎處理,容易造成環境的污染。從效率的角度來看,產生無用而需廢棄的副產物,是一種浪費。以現在愈來愈受注重的綠色化學(註1)概念來看,我們需要發展更有效率的化學製程,其中催化劑的發展是一個重要的方向;催化劑可以降低化學反應的活化能,使得反應加速,因此能在較為溫和的條件下進行反應,明顯的具有節能的效果。催化劑扮演的是協助的角色,本身並不會成為產物的一部分;透過一個循環的機制,催化劑在每一次的循環結束時,會重新產生,進行下一輪的催化循環,因此並不需要使用許多的催化劑。在工業上,好的催化劑用量最好能在0.01當量以下,愈少愈好,若是超過0.05當量,將不會是很理想的催化劑。

催化劑簡介

催化劑基本上分為兩種:異相催化與勻相催化。前者是使用的催化劑與反應溶液不互溶,催化的反應發生在催化劑與溶液的介面,因此催化劑的表面積愈大效果愈好。常見的異相催化劑,例如食品工業中,將不飽和脂肪酸的碳-碳雙鍵飽和化時,使用氫氣為還原劑,但需要鈀(Pd)、鉑(Pt)或(Rh)等金屬做為催化劑。這些金屬不溶於反應使用的有機溶劑,屬於異相催化劑。為了充份將金屬的表面攤開以提高效率,細微的金屬顆粒是靠著吸附的方式附著在各種固相的擔體上面,常用的擔體是木炭(charcoal)的粉末。異相催化的好處是去除容易,透過簡單的過濾即可,需要的話可以回收再使用,符合綠色化學的精神;但壞處是表面積的多寡與顆粒的大小和均勻度有關,不易控制。反應發生在兩相介面,攪拌的效率很重要,因此反應的時間必須視實際進行狀況來判定。不同的擔體會影響金屬的表面結構(註2),進而影響反應活性和選擇性,不同的金屬化學反應性也不同。

a1

圖1 銠(Rh)金屬是碳-碳雙鍵氫化常用的異相催化金屬,將三氯化銠與過量的三苯磷反應可得到著名的威爾金森催化劑(Wilkinson catalyst),此催化劑可以溶解於許多的有機溶劑中。

勻相催化的系統中,催化劑是可溶於反應溶劑中的,因此反應是發生在均勻的單相中,反應的速率易於掌控,但是去除催化劑以及回收不易。許多的勻相催化劑乃以金屬為催化的核心,那麼要如何讓金屬溶於有機溶劑呢?操控溶解度是利用金屬的配位能力,使用有機化合物做為配位基(ligand),與金屬生成的配位化合物(coordination compound),被稱為有機金屬化合物(organometallic compound),可以溶於有機溶劑 (圖1)。這些有機金屬的催化劑另一項最重要的優點,在於有機配位基的結構可以改變,進而影響金屬催化的活性以及選擇性,這就給予了化學家很大的空間去發展符合他們需求的催化劑。