和角公式

從托勒密定理到和角公式 (From Ptolemy Theorem to Angle sum and difference identities)

從托勒密定理到和角公式 (From Ptolemy Theorem to Angle sum and difference identities)
臺北市立第一女子中學數學科蘇俊鴻老師

在高中課程的三角函數單元提及了許多三角公式,像和(差)角公式、倍角公式及半角公式。事實上,這些三角公式(主要是正弦和餘弦函數)都是托勒密(C. Ptolemy, c. 100-178 C.E.)在發展弦表的過程中,提出的一系列命題(有興趣的讀者可參見《The Almagest》一書)。

從課程的安排上,不難發現和角與差角公式處於非常基礎的地位,這個現象在托勒密提出的脈絡中也是相符。然而,托勒密如何發現和角公式?若要讀者好奇地往前追溯,將會驚奇地發現和角公式和托勒密定理有著密切的關係。因此,從托勒密定理出發,也是介紹和角公式一個很好的切入點。

三角函數的疊合

三角函數的疊合 (Simplifying  \(\sin x+\cos x\))
臺北市立大直高級中學數學科高子婷老師/國立臺灣大學數學系翁秉仁教授責任編

摘要:在學會正弦、餘弦的基本函數圖形及其平移伸縮後,很自然會想知道正弦與餘弦組合(\(y = A\sin x + B \cos x\) )圖形的樣貌,即「三角函數的疊合」。疊合有非常多有趣的切入點,本文簡單點出幾個不同的想法。

正規課本內容

不論任何版本的課本,第一個例子幾乎都是 \(y=\sin x +\cos x\) ,想辦法將 \(y=\sin x +\cos x\) 湊成和角公式,技巧是提出以 \(A\)、\(B\) 為兩股的斜邊,即 \(\sqrt{A^{2}+B^{2}}\) ,就能夠將 \(y=\sin x+\cos x\) 化簡成單一三角函數:

\(\begin{array}{ll} y &=\displaystyle \sin x+\cos x \\&=\displaystyle\sqrt{2}(\frac{1}{\sqrt{2}}\sin x+\frac{1}{\sqrt{2}}\cos x)\\&=\displaystyle\sqrt{2}(\sin x\cos\frac{\pi}{4}+\cos x\sin\frac{\pi}{4})\\&=\displaystyle\sqrt{2}\sin(x+\frac{\pi}{4})~~~~~~~~~(1)\end{array}\)