特徵向量

從特徵值、特徵向量到凱萊─漢米爾頓定理、矩陣的對角化(From Eigenvalues and Eigenvectors to Cayley-Hamilton Theorem and the Matrix Diagonalization)

從特徵值、特徵向量到凱萊─漢米爾頓定理、矩陣的對角化(From Eigenvalues and Eigenvectors to Cayley-Hamilton Theorem and the Matrix Diagonalization)
國立臺南第一高級中學數學科林倉億老師

特徵值與特徵向量

在〈矩陣乘法的限制及性質〉一文中,我們知道矩陣乘法的特殊性開啟了許多的可能性,比如說兩個均不為零方陣的同階方陣,相乘之後竟然可以是零方陣。接下來我們要看的是矩陣乘法的另一種重要應用,讓我們先從簡單的二階方陣看起。

給定方陣 \(A = \left[ {\begin{array}{*{20}{c}} 1&4\\ 3&2 \end{array}} \right]\),哪些 \(2\times 1\) 階矩陣 \(X = \left[ {\begin{array}{*{20}{c}} {{x_{1}}}\\ {{x_{2}}} \end{array}} \right]\) 會滿足 \(A \cdot X = \lambda\cdot X\),

其中 \(\lambda\) 是實數,而非矩陣。

方程式 \(A \cdot X =\lambda\cdot X\) 的意義就是 \(X\) 在乘以 \(A\) 之後,會變成原來的 \(\lambda\) 倍。

一題有趣的矩陣試題(An Interesting Question of Matrix)

一題有趣的矩陣試題(An Interesting Question of Matrix)
國立臺南第一高級中學數學科林倉億老師

「設  \(A=\begin{bmatrix} 1 &4\\3 & 2\end{bmatrix}\) ,且二階方陣 \(X\)、\(Y\) 滿足 \(X+Y=I\) 且  \(XY=O\),
其中 \(I=\begin{bmatrix} 1 &0\\0 & 1\end{bmatrix}\) 、 \(O=\begin{bmatrix} 0 &0\\0 & 0\end{bmatrix}\) 。若存在實數 \(a>b\) 使得 \(A=aX+bY\),
求 \(a\)、\(b\) 之值。」

上面這個題目曾多次出現在不同的考試之中(敘述略有出入),而無論是哪一份試卷,絕大多數的考生都是被考倒的。以下提供四種不同層次的解法,供讀者參考。

解法一:(努力計算)

\(\begin{cases} X+Y=I\\aX+bY=A\end{cases}\Rightarrow\)  解聯立得  \(\begin{cases} X=\frac{A-bI}{a-b}\\Y=\frac{A-aI}{b-a}\end{cases}\),因為 \(XY=O\),

故  \(\begin{bmatrix} 0 &0\\0 & 0\end{bmatrix}=\displaystyle\frac{1}{-(a-b)^2}\begin{bmatrix} 1-b &4\\3 & 2-b\end{bmatrix}\begin{bmatrix} 1-a & 4\\ 3 & 2-a\end{bmatrix}\Rightarrow b=3-a\)

代入  \((1-b)(1-a)+12=0\Rightarrow a^2-3a-10=0 \Rightarrow (a,b)=(5,-2) or (-2,5)\)

又  \(a>b\)  ,故  \((a,b)=(5,-2)\)  。

上述解法就是將 \(X\)、\(Y\) 用  \(A\) 表示後,再利用 \(XY=O\) 解出 \(a\)、\(b\) 。

基本上都是在做計算,看不出此題背後的數學結構為何。