玻色子

Hubbard 模型(三):費米 Hubbard 模型:簡單的解析事實(上)

Hubbard 模型(三):費米 Hubbard 模型:簡單的解析事實(上)
蕭維翰

我們首先介紹在費米 Hubbard 模型中一些可由直覺跟解析解理解的事實。

Figure1. (photo credit: 作者自繪) 由於不相容原理,當系統沒有躍遷能力的時候,費米 Hubbard 模型最低能量的組合便是盡可能地讓每個粒子都佔有一個晶格點。

經歷了前面兩篇暖身,有忍住讀完的讀者們應該稍微對 Hubbard 模型有了基本的了解。本文中我們繼續考慮類似的模型,但在這裡我們把粒子們換成費米子。

費米子與玻色子的根本差異在於前者遵守庖立不相容原理(Pauli Exclusion Principle),一個系統內不會有兩個具有一模一樣量子數的費米子,這也將大大的影響我們對基態物質相的分析。

Hubbard 模型(二):玻色 Hubbard 模型

Hubbard 模型(二):玻色 Hubbard 模型
蕭維翰

簡單的玻色 Hubbard 模型,在 2 維空間中提供我們了解莫特絕緣體與超流體間的相變化。

希望筆者在前文中或多或少給了一點理由讓大家一起來賞玩原本只屬於一部分物理學家們的玩具。現在開始我們進入正題來探討 Hubbard 模型家族中的幾個知名典範。明確的說,首先我們討論在二維空間中正方晶格(square lattice)上的玻色子版本 Hubbard 模型(Bosonic Hubbard Model)[1,2]。

Hubbard 模型(ㄧ):動機與定義

Hubbard 模型(ㄧ):動機與定義
蕭維翰

我們將利用一個系列文跟大家介紹一個在凝態物理中很重要的模型家族。

前兩篇文章跟讀者定性地講述了在討論金屬性質時,大家所謂的典範式的蘭道理論是什麼意思。筆者預計再花至少一兩篇文章聊聊現在當紅的「怪金屬」(Strange metal)和「壞金屬」(bad metal),探討它們與正常金屬的差異,並盡筆者能力所及跟大家說明背後的原因。

物理學中的對偶性(下)

物理學中的對偶性(下)
蕭維翰

連結:物理學中的對偶性(上)

對偶性不只存在在前面的簡單例子中,其實我們也有費米子與玻色子、玻色子與玻色子、乃至於費米子與費米子間的對偶性。

圖一:水波中的孤波(photo credit: Wikipedia)

在上集的討論中,我們約略介紹了「對偶」(duality)在物理學中,的意思:表面上看起來不同的兩個理論,本質上提供一樣的描述。最基本的例子是所謂伊辛模型(Ising model)在原晶格與對偶晶格上的對偶,以及電磁學馬克斯威方程式(Maxwell equations)在沒有電荷下電場磁場交換的對偶性。

旋轉的玻色愛因斯坦凝聚態

旋轉的玻色愛因斯坦凝聚態
蕭維翰

圖一:旋轉的 BEC 中的漩渦和真實的漩渦

高中的物理課程中,我們學習動量、角動量,用這兩個量來量化一個物件平動狀態以及轉動的狀態。儘管大多數人在大學後不會再接觸更進階的物理課程,但事實上就描述運動狀態而言,也沒有更多新的物件了。

物理學的理論描述是盡量得跟實驗呼應的,也因此,即便是今日大如強子對撞機的尖端實驗,源頭的想法也都是想藉由動量、角動量等在交互作用的前後關係,去獲得物理資訊。

本文就來略談,當我們轉動一個流體,更精確地說,一個玻色愛因斯坦凝聚態(Bose-Einstein Condensate),什麼事情會發生。

玻色子與費米子二:粒子特性

玻色子與費米子二:粒子特性 (Bosons and fermions Ⅱ: Particles qualities)/strong>
國立臺灣大學物理系 林惟淨

連結:玻色子與費米子一:理論來源

在上一篇文章中我們解釋了玻色子與費米子的理論來源,是由我們必須改寫多粒子狀態下全同粒子的波函數而得。延續著玻色子與費米子的主題,接下來在這篇文章中,我們則要介紹這兩種粒子的特性。

玻色子與費米子一:理論來源

玻色子與費米子一:理論來源 (Bosons and Fermions Ⅰ: The Theory)
國立臺灣大學物理系 林惟淨

在量子物理的世界中,粒子可以分為玻色子 (Bosons) 與費米子 (Fermions) 兩類,它們分別以印度物理學家玻色 (Satyendra Nath Bose, 1894-1974) 與義大利物理學家費米 (Enrico Fermi, 1901-1954) 命名,以紀念兩人傑出的研究貢獻。在這篇文章中我們將著重於玻色子與費米子的理論來源,而在下篇文章中,我們將介紹一些這兩種粒子的特性。