綠色化學

併發聯繼催化

併發聯繼催化(Concurrent Tandem Catalysis)
國立臺灣師範大學化學系碩士班一年級 薛園馨

在講究效率與原子經濟 (Atom Economy) 的現在,一鍋化 (one pot) 的合成策略可以達到減少溶劑、省下繁複的純化時間與管柱層析時所使用的沖堤液、避免因純化步驟中造成產物流失而使產率下降等等的優點,是合成化學家努力的目標,這次要介紹的併發聯繼催化 (Concurrent Tandem Catalysis) 便是其中一種方法。

併發聯繼催化指的是在單一個反應容器內有兩個或多個催化循環結合使反應物順利的進行多步反應來產生預期的產物,這當中必須考慮到每個催化劑與基質、與中間產物的選擇性才能有好的產率,併發聯繼催化可細分為以下幾種主要類型。1

  • 第一型
pic11

圖一、第一型的反應(作者繪製)

如圖一,反應物經催化劑甲催化後產生中間產物 C,中間產物 C 在與反應物 B 經催化劑甲催化下得到產物 P。1如圖二,首先金屬配位在反應物 4-戊炔-1-胺(I) 的參鍵上,配位後參鍵被氮的孤對電子攻擊而進行分子內合環反應,再脫去金屬得到的中間產物 2-甲基吡咯啉(II),此時溶劑內的三乙基矽烷 (III) 與中間產物 (II) 經過金屬催化下進行矽氫加成反應 (Hydrosilylation),得到最終產物含矽的吡咯烷 (IV)。2

二氧化碳的回收和再利用

二氧化碳的回收和再利用 (Recycle and Reuse of Carbon Dioxide)
國立臺灣大學化學系名譽教授蔡蘊明

images

二氧化碳的議題,想必大家都不會陌生。人類靠電來推動科技,而目前最大宗的電源是來自於火力發電,除了消耗地球的資源外,隨伴著產生大量的二氧化碳,這方面當然也不能忽略車輛和工廠扮演的角色。許多科學家相信這造成了地球的暖化,若不及早處理,終將導致一場浩劫。事實是用2013年的全球二氧化碳排放量來與1990年的比較,已經增加了0.9倍,以這樣的速率增加,在我們大家幾乎都可親自體驗的十年之後,地球環境的狀況將不可想像!例如大氣二氧化碳的濃度增加,除了溫室氣體效應,造成全球暖化,亦將導致溶入海洋的二氧化碳濃度升高,隨伴產生的碳酸,濃度也會增加,海洋生態就受到雙重的衝擊,有興趣的讀者可以參看四月十四號出刊的時代雜誌,其中就有一篇與珊瑚礁相關的文章。

想當然爾的解決之道,一個就是節約以及更有效率的使用能源,但若是站在民眾的角度來看,事關民生需求和享受,誰願犧牲?開發中國家更急於發展經濟,節約用電根本就是奢談。因此不會意外的,發展二氧化碳的回收和儲存技術,是先進國家著重的研究課題。

追求不再貴重的催化之路

追求不再貴重的催化 (catalysis)之路
國立臺灣大學化學系名譽教授蔡蘊明

現代人類的生活和文明離不開化學,化學品的製造經常隨伴著副產物的產生,這些副產物若不謹慎處理,容易造成環境的污染。從效率的角度來看,產生無用而需廢棄的副產物,是一種浪費。以現在愈來愈受注重的綠色化學(註1)概念來看,我們需要發展更有效率的化學製程,其中催化劑的發展是一個重要的方向;催化劑可以降低化學反應的活化能,使得反應加速,因此能在較為溫和的條件下進行反應,明顯的具有節能的效果。催化劑扮演的是協助的角色,本身並不會成為產物的一部分;透過一個循環的機制,催化劑在每一次的循環結束時,會重新產生,進行下一輪的催化循環,因此並不需要使用許多的催化劑。在工業上,好的催化劑用量最好能在0.01當量以下,愈少愈好,若是超過0.05當量,將不會是很理想的催化劑。

催化劑簡介

催化劑基本上分為兩種:異相催化與勻相催化。前者是使用的催化劑與反應溶液不互溶,催化的反應發生在催化劑與溶液的介面,因此催化劑的表面積愈大效果愈好。常見的異相催化劑,例如食品工業中,將不飽和脂肪酸的碳-碳雙鍵飽和化時,使用氫氣為還原劑,但需要鈀(Pd)、鉑(Pt)或(Rh)等金屬做為催化劑。這些金屬不溶於反應使用的有機溶劑,屬於異相催化劑。為了充份將金屬的表面攤開以提高效率,細微的金屬顆粒是靠著吸附的方式附著在各種固相的擔體上面,常用的擔體是木炭(charcoal)的粉末。異相催化的好處是去除容易,透過簡單的過濾即可,需要的話可以回收再使用,符合綠色化學的精神;但壞處是表面積的多寡與顆粒的大小和均勻度有關,不易控制。反應發生在兩相介面,攪拌的效率很重要,因此反應的時間必須視實際進行狀況來判定。不同的擔體會影響金屬的表面結構(註2),進而影響反應活性和選擇性,不同的金屬化學反應性也不同。

a1

圖1 銠(Rh)金屬是碳-碳雙鍵氫化常用的異相催化金屬,將三氯化銠與過量的三苯磷反應可得到著名的威爾金森催化劑(Wilkinson catalyst),此催化劑可以溶解於許多的有機溶劑中。

勻相催化的系統中,催化劑是可溶於反應溶劑中的,因此反應是發生在均勻的單相中,反應的速率易於掌控,但是去除催化劑以及回收不易。許多的勻相催化劑乃以金屬為催化的核心,那麼要如何讓金屬溶於有機溶劑呢?操控溶解度是利用金屬的配位能力,使用有機化合物做為配位基(ligand),與金屬生成的配位化合物(coordination compound),被稱為有機金屬化合物(organometallic compound),可以溶於有機溶劑 (圖1)。這些有機金屬的催化劑另一項最重要的優點,在於有機配位基的結構可以改變,進而影響金屬催化的活性以及選擇性,這就給予了化學家很大的空間去發展符合他們需求的催化劑。

綠色化學(Green Chemistry) ― 拯救地球的未來

綠色化學(Green Chemistry) ― 拯救地球的未來
國立臺灣大學化學系名譽教授蔡蘊明

*藉本文向在臺灣推廣永續化學教育多年的尖兵劉廣定教授致敬

化學是最為貼近人類生活的學問,它雖是組成物質的基礎,其運作存在於各處卻不易發現,因此人們常忘記自身的存在靠得就是化學。理想上,人類若能夠完全掌握化學,就生命而言,化學將能解決疾病與老化的問題;就生存而言,化學將能解決飲水,糧食和能源的問題。隨著科技進步帶來的舒適,人類無盡的追求更高的享受,背後支撐著的有很大一塊來自於化學,但是我們必須清楚的瞭解,目前能量的主要來源,在於將化學能轉換成為電能。很不幸的,這導致了大量二氧化碳的排放,許多人認為這造成地球氣候型態的改變,因此近年巨大的天災頻傳,造成大量生命財產的損失。人類追求物質的享受,需要新的物質,提供新的功能,但是我們不能忘記,那些新的物質都是靠著化學方法來合成的,多少的大自然資源被消耗?多少的廢棄物質因此流入河川,埋進土壤,排放至大氣?人類追求食物的享受,為了速成,使用了各種藥劑和添加物,來幫助動植物的生長,和加速食物的製造與處理,在這裡化學品的運用也扮演了重要的角色,臺灣人近年來對此尤其是心有戚戚焉。每每當問題發生時,化學永遠是帶罪的羔羊,其實人類的無知和欲求才是罪惡之始。上述的誤解,甚至於被臺灣的一支著名廣告利用,在電視上宣稱某某工坊痛恨化學。筆者在課堂上則藉機告訴學生,如果你/妳痛恨化學,那就等同於痛恨生命,因為生命的根基就在於化學。

綠色化學的十二原則

化學固然是無辜的,但是要解決人類製造的危機,仍需要使用化學的方法。在進入二十一世紀之前,就有一批化學家開始鼓吹綠色化學的概念,其中最著名者為阿那斯特斯(Anastas)華納(Warner)所提出的綠色化學十二原則,受到化學界廣泛的重視。在臺灣大學化學系的劉廣定教授,最早在臺灣推廣綠色化學的概念,認為必須將此概念透過教育植入民心,可惜曲高和寡效果有限。為了呼應劉廣定教授的努力,特此為文,依照綠色化學的十二原則來看化學未來應依循的走向,希望臺灣中等科學教育的工作者共同努力。劉廣定教授認為「綠色」的用詞過於偏狹,他覺得「永續(sustainable)」較為恰當,但是因為「綠色」較為直接,本文仍採用綠色化學來說明。

由於綠色化學十二原則內容有些複雜,英國諾丁漢大學(The University of Nottingham)的Tang、Smith 和 Poliakoff提出了 ”PRODUCTIVELY” 這十二個英文字母組成的單字,來幫助我們記得這十二原則[註],此單字中每一個字母,代表一個原則,筆者也東施效顰,提出十二個中文字來代表:

廢物低    保降能    再簡化    可監危

與此十二字相對應的是

防廢、物盡、低毒、保安、降輔、節能、再生、簡潔、催化、可解、監測、思危

等十二個辭,以下針對這十二個原則做較詳細的說明。

防廢(P)

防範勝於治療,這個原則就是在設計化學製程的時候,或是有選擇的時候,要避免產生廢棄物,或採用產生最少廢棄物的方法。化學反應的產物,除了製造的標的物質之外,也常會有隨伴的副產物產生,如果副產物沒有利用價值,就成為廢棄物,也就產生後續處理廢棄物的問題。以圖1為例,讓我們來比較一個簡單的氧化反應:將1-苯基乙醇氧化成為苯乙酮。方法一運用具有毒性的鉻金屬化合物為氧化劑,此法需要用當量級的試劑,也就是說,要氧化三莫耳的1-苯基乙醇,需要用到兩莫耳的三氧化鉻,而且還需要用掉三莫耳的硫酸,除此之外產生了一莫耳的硫酸鉻,和六莫耳的水。當然水不被視為廢棄物,但是硫酸鉻是具有毒性的重金屬之鹽類化合物,不可隨意丟棄,增加了處理的費用。與方法二相比,用空氣裡的氧氣為試劑,藉著少量催化劑的幫助,亦可達到同樣的目的,但是沒有其它的廢棄物,二者的優劣非常明確。

g1

圖1 將1-苯基乙醇氧化成為苯乙酮的兩種方法:方法一運用兩當量具有毒性的三氧化鉻,以及三當量的硫酸為試劑,產生三分之一當量的硫酸鉻和六當量的水;方法二則是利用催化劑的幫助,以氧氣來進行氧化,除了苯乙酮只另產生水。

 

類似方法一這種型態的化學反應,早年製造了許多廢棄物,排放到環境中所造成的污染,導致日後需要花費大量人力物力去整治,得不償失。所幸先進國家現在很注重這個問題,制訂了許多的律法來防堵問題的出現,但是在落後或法治不彰的國家,仍然是嚴重的問題。

綠色化學(Green Chemistry)與原子經濟(Atom Economy)

綠色化學(Green Chemistry)與原子經濟(Atom Economy)
國立臺灣大學化學系李俊毅/國立台灣大學化學系林雅凡博士責任編輯

在「化學反應式」文中,提到了原子經濟(atom economy)一詞,原子經濟又稱作原子效率(atom efficiency),是判定化學反應轉換效率的指標,其計算方法是將欲得到的產物(desired product)總質量除以反應物的總質量(見圖一,參考資料一)。


(圖一)

原子經濟越高就代表反應浪費掉的質量越少。以高中化學實驗製備阿斯匹靈為例,水楊酸與過量的醋酸酐反應在酸催化下可得阿斯匹靈與醋酸(圖二,參考資料二),在這個反應中阿斯匹靈是我們所要的產物,假設產率為100%,用1克的水楊酸與3.24克的醋酸可以得到1.30克阿斯匹靈,那原子經濟的百分比是1.30 ÷ (1+3.24) = 31% (此處計算忽略催化量的硫酸)

(圖二)

在合成中主要影響原子經濟的三項因素是試劑當量、保護與活化。如前段所提的阿斯匹靈合成,為使反應完全,醋酸酐在反應中添加過量,若我們能用等當量或略過當量的試劑就可達到完全反應,會大幅提升原子經濟。製藥廠生產的化合物幾乎都比阿斯匹靈複雜,分子中有多個、多種官能基,反應的試劑不見得能夠很專一地與特定官能基反應(例:烯與炔在催化劑作用下都有可能被氫氣還原),這時候就需要將不想要反應的官能基保護住,等反應結束後再去保護。在保護、去保護,一來一往間既費時費工,也會損耗一部分的基團(因為保護基不存在於最後產物)與產率。2007年,Scripps研究中心的Baran在期刊「自然(Nature)」上發表首次不用保護基進行的複雜天然物全合成(參考資料三),所伴隨的設計概念使得有機合成往前邁進一大步。

綠色化學(Green Chemistry)總論

綠色化學(Green Chemistry)總論
國立臺灣大學化學系李俊毅/國立臺灣大學化學系林雅凡博士責任編輯

化學合成好比帶兵打仗,預期的產物就是攻擊目標。起初指揮官命令部下不顧一切攻下山頭,為達目的不擇手段的戰略,的確可保證完成任務,但並非最有效率的方法。若對攻擊目標有更多的資訊、對於敵方的實力有更清楚的掌握,便可以用智慧型方式作戰,例如導彈攻擊、抄捷徑突擊,這樣方可把傷害降到最低,甚至減少不必要的浪費。同樣地,隨著合成方法日益精進,化學家能有更多的神兵利器來完成想要的化合物。 提到合成的例子,高中化學實驗課有阿斯匹靈的製備,這是很標準的有機實驗,不過與工業上的製程規模相差不可以道里計,根據1997年的「化學與工程新知(Chemical and Engineering News)」期刊報導,美國前20大化工產品的年產量均超過10億磅(參考資料1)。