Electromagnetic wave

紅外線光譜(二)

紅外線光譜(infrared spectroscopy) (二)
國立臺灣師範大學化學系碩士班 翁于婷

連結:紅外線光譜(一)

拿到一張紅外線光譜要如何分析判斷,確認化合物的結構是正確的呢?
第一步是分析峰位,就是吸收波鋒在光譜的位置,由橫軸振動頻率右到左逐漸變大,可劃分五個區域判讀,第一是4000~2500 cm-1,第二是2500~1800 cm-1,第三是1800~1600 cm-1,第四是1600~1400 cm-1,最後1400 cm-1以後我們稱為指紋區(fingerprint region),一般用來鑑定物質用。

紅外線光譜(一)

紅外線光譜(infrared spectroscopy) (一)
國立臺灣師範大學化學系碩士班 翁于婷

空氣中充滿著各式各樣的電磁波,有人類眼睛可見的可見光 (visible)、微波爐使用的微波 (microwave)、還有用於醫學診斷的 X-ray 等等(圖一),其中波長介於可見光波和微波,和人類最息息相關的電磁波就是是紅外線 (infrared),紅外線波長約 700 nm – 1 mm,由英國皇家學院的威廉‧赫歇爾 (William Herschel) 發現

電磁波的能量

電磁波的能量 (Energy carried by electromagnetic waves)
國立臺灣大學數學系101年高尉庭

在靜電磁學中,我們知道電場與磁場會儲存能量,而單位體積所儲存的能量稱之為「能量密度」(energy density)。在真空中,能量密度與電磁場的關係為:

$$u=\frac{1}{2}(\varepsilon_0E^2+\frac{B^2}{\mu_0})$$

其中 $$u$$ 為能量密度,$$\varepsilon_0$$ ­為真空電容率,$$\mu_0$$ 為真空磁導率。

不過在一般的電磁學下,電磁場不僅能儲存能量,還能夠傳遞能量,而描述電磁場的能量、能量傳遞與帶電粒子做功的關係的定理是坡印廷定理(Poynting’s theorem)。此定理可看成一種在電磁場中的能量守恆的敘述,在數學上與流體力學中所謂的連續方程式(continuity equation)相似。