多項式函數

牛頓插值多項式 (3)

牛頓插值多項式 (3) (Newton Interpolating polynomial)
臺北市立第一女子高級中學蘇俊鴻老師

連結:牛頓插值多項式(2)

在〈牛頓插值多項式(2)〉中,我們討論了牛頓插值多項式形式的意義。接下來,我們想要介紹數值分析中對於牛頓插值多項式中各項係數的運算規則和簡便求法。基本上,它的思路和〈牛頓插值多項式(2)〉中所談論的想法一致,只是我們透過符號的輔助,幫助掌握其中所涉及的規律。我們的問題為

給定 \(n+1\) 個資料點 \(({x_0},f({x_0})),({x_1},f({x_1})),({x_2},f({x_2})), \cdots ,({x_n},f({x_n}))\),
求滿足這 \(n+1\) 個資料點的 \(n\) 次多項式 \(f(x)\)。

首先,從滿足兩個點 \(({x_0},f({x_0})),({x_1},f({x_1}))\) 的一次多項式 \(f_1(x)\) 討論起。

假設 \({f_1}(x) = f({x_0}) + {b_1}(x – {x_0})\)

那麼,\({f_1}({x_1}) = f({x_1}) = f({x_0}) + {b_0}({x_1} – {x_0}) \Rightarrow {b_1} = \frac{{f({x_1}) – f({x_0})}}{{{x_1} – {x_0}}}\)。

因此 \({f_1}(x) = f({x_0}) + \frac{{f({x_1}) – f({x_0})}}{{{x_1} – {x_0}}}(x – {x_0})\)

接著,考慮滿足三個點 \(({x_0},f({x_0})),({x_1},f({x_1})),({x_2},f({x_2}))\) 的二次多項式 \(f_2(x)\)。

承上面的結果,可以假設

\(\begin{array}{ll}{f_2}(x) &= {f_1}(x) + {b_2}(x – {x_0})(x – {x_1}) \\&= f({x_0}) + \frac{{f({x_1}) – f({x_0})}}{{{x_1} – {x_0}}}(x – {x_0}) + {b_2}(x – {x_0})(x – {x_1})\end{array}\)

牛頓插值多項式 (2)

牛頓插值多項式 (2) (Newton Interpolating polynomial)
臺北市立第一女子高級中學蘇俊鴻老師

連結:牛頓插值多項式(1)

一樣從這個問題開始

給定平面上三點 \(A(1,7)\),\(B(2,6)\) ,\(C(3,11)\),求圖形通過這三點的二次多項式。

我們知道基於牛頓插值多項式,可以假設所求函數 \(f(x)\)為

\(f(x) = f(1) + a(x – 1) + b(x – 1)(x – 2)\)

通常開頭這個形式就是初學者亟需跨越的門檻。本文試圖利用學生已經擁有的多項式知識,提供一個教學上可行的引導,尚請方家不吝指教。至於學生需要知道什麼多項式的知識呢?只要因式定理即可。

牛頓插值多項式 (1)

牛頓插值多項式 (1) (Newton Interpolating polynomial)
臺北市立第一女子高級中學蘇俊鴻老師

由於多項式「常被用來逼近一般函數,並用來求一般函數的近似值。」,使得插值多項式有了學習的正當性,99課綱並特意引進拉格朗日插值多項式。

例如:以給定平面上三點 \(A(1,7),B(2,6),C(3,11)\) 為例,求圖形通過這三點的二次多項式。上述的問題等同於求一個二次多項函數 \(f(x)\),使得 \(f(1)=7,f(2)=6,f(3)=11\)。

那麼,滿足條件的拉格朗日插值多項式為

\(\displaystyle f(x) = 7 \cdot \frac{{(x – 2)(x – 3)}}{{(1 – 2)(1 – 3)}} + 6 \cdot \frac{{(x – 1)(x – 3)}}{{(2 – 1)(2 – 3)}} + 11 \cdot \frac{{(x – 1)(x – 2)}}{{(3 – 1)(3 – 2)}}\)。

然而,許多課本還加碼補充牛頓插值多項式的方法(這也說明有著各種不同形式的插值多項式)。

通常開頭就會寫道:假設基於牛頓插值多項式,

滿足條件之函數 \(f(x)=f(1)+a(x-1)+b(x-1)(x-2)\),

再將 \(f(2)=6,f(3)=11\) 代入,求出 \(a,b\)。

事實上,這樣的補充留下的問題,比它所解決的問題還多。例如,為何牛頓插值多項式會是上述的形式?除了背誦記憶規則外,有沒有理解它的其他方法?牛頓插值多項式的假設仍需要再求解未知數,會比拉格朗日插值多項式便利嗎?這個方法最早是牛頓給出的嗎?他如何想到的?是為了解決什麼問題呢?這個系列文章就是想要解答以上這些問題。首先,就由牛頓開始吧!

二項式定理的推廣(四): 和算家的數學表(下)

二項式定理的推廣(四):和算家的數學表(下)
(The generalization of Binomial theorem(IV):the mathematical table of wasan mathematicians)

臺北市立和平高中黃俊瑋教師

連結:二項式定理的推廣(三):和算家的數學表(上) 

在〈二項式定理的推廣(三):和算家的數學表(上)〉一文中,提到江戶時期日本數學家(和算家)利用數學表的方式,推廣了二項式定理,以求得了 $$(1-x)^{-k}$$ 展開式之各項係數表。另一方面,在〈二項式定理的推廣(二)〉一文裡,也提到他們利用開方法(綜合除法,亦即中國傳入的賈憲-霍納法)求得了展開式:

$${(1 + x)^{\frac{1}{2}}} = 1 + \frac{1}{2}x – \frac{1}{8}{x^2} + \frac{3}{{48}}{x^3} – \frac{5}{{128}}{x^4} + \frac{7}{{256}}{x^5}…$$

有了上述展開式之後,即可以透過造表、觀察關係與規律的方式造出

$${(1 + x)^{ – \frac{1}{2}}}$$、$${(1 + x)^{ – \frac{3}{2}}}$$、$$\cdots$$、$${(1 + x)^{ – \frac{2k-1}{2}}}$$、$$\cdots$$以及 $${(1 + x)^{\frac{3}{2}}}$$、$${(1 + x)^{\frac{5}{2}}}$$、$${(1 + x)^{\frac{7}{2}}}$$、$$\cdots$$、$${(1 + x)^{\frac{2k-1}{2}}}$$、$$\cdots$$之展開式。

利用 $$(1 + x){(1 + x)^{\frac{1}{2}}}$$ 可得 $${(1 + x)^{\frac{3}{2}}}$$,利用 $$(1 + x){(1 + x)^{\frac{3}{2}}}$$ 可得 $${(1 + x)^{\frac{5}{2}}}$$等。

二項式定理的推廣(三): 和算家的數學表(上)

二項式定理的推廣(三):和算家的數學表(上)
(The generalization of Binomial theorem(III):the mathematical table of wasan mathematicians)

臺北市立和平高中黃俊瑋教師

連結:二項式定理的推廣(二):有理數冪次

在〈二項式定理的推廣(一)〉與〈二項式定理的推廣(二)〉兩篇文章中,提到了江戶時期日本數學家(和算家)對二項式定理的推廣,包含利用無窮等比級數公式以及直觀地使用了「無窮多項式」的乘法,將二項式定理的幂次推廣至負整數的情況。並也說明他們如何利用開方法(綜合除法,亦即中國傳入的賈憲-霍納法)將二項式定理的幂次推廣至 $$1/2$$ 以及 $$1/n$$ 任意的情況。

有趣的是,江戶時期日本數學家進一步發展出各類數學「表」,用來幫助計算與推廣二項式定理,一般也作為記載數學知識之用。如表一所示,為 $$(1-x)^{-k}$$ 類二項展開式之係數表(這裡為方便讀者閱讀,筆者將原表格內容改以現代符號來表示,並受篇幅所限只列出當中的一部份),若我們僅看數字部份,則第一列的數字為 $$(1-x)^{-1}$$ 的各項係數;第二列為$$(1-x)^{-2}$$ 的各項係數;$$\cdots$$;第 $$k$$ 列為 $$(1-x)^{-k}$$ 的各項係數(然表中皆僅列到前七項)。

有了第一列之後,便可以任意地擴張整個表的內容,得到任意的 $$(1-x)^{-k}$$ 展開式係數。

例如:

$$(1-x)^{-2}$$ 的 $$x^2$$ 項係數 $$3$$,便是上一列前 $$3$$ 項之和,即 $$a_{22}=a_{10}+a_{11}+a_{12}$$

$$(1-x)^{-3}$$ 的 $$x^4$$ 項係數 $$15$$,便是上一列前 $$5$$ 項之和,
即 $${a_{34}} = {a_{20}} + {a_{21}} + {a_{22}} + {a_{23}} + {a_{24}}$$

$$\cdots$$

$$(1-x)^{-k}$$ 的 $$x^n$$ 項係數,便是上一列前 $$n+1$$ 項之和,
即 $${a_{kn}} = {a_{k – 1,0}} + {a_{k – 1,1}} + {a_{k – 1,2}} +\ldots+ {a_{k – 1,n}}$$

二項式定理的推廣(二): 有理數冪次

二項式定理的推廣(二):有理數冪次
(The generalization of Binomial theorem(II):rational power)

臺北市立和平高中黃俊瑋教師

連結:二項式定理的推廣(一): 負整數冪次 

前文〈二項式定理的推廣(一):負整數冪次〉裡,對二項式定理作了冪次上的推廣,從正整數推廣至負整數。接著,我們進行另一個推廣:有理數冪次。不過,受限於篇幅,這裡主要先討論指數為 $$1/2$$ 次方的二項展開式。並同樣借用江戶時期日本數學家的方法來作說明。

首先,指數為 $$1/2$$ 次方的二項展開式與開平方問題為一體兩面,例如 $$(1+a)^{\frac{1}{2}}$$ 可看成 $$\sqrt{1+a}$$。再者,在東方數學史發展的過程裡,$$\sqrt{1+a}$$ 之開方問題與方程式的解息息相關:若令$$x=\sqrt{1+a}$$ ,則開方求 $$x$$ 相當於求解方程式 $$x^2-(1+a)=0$$ 之實根問題。

然而,無論是傳統中算或者江戶時期的日本數學發展的過程,求解一元多項方程次時,往往利用了類似現今綜合除法的「開方法」(即賈憲-霍納法)來求方程式的數值解(相關內容與方法,可參考另一篇文章〈利用綜合除法求解多項方程式〉)。

因此,處理 $$(1+a)^{1/n}$$ 有關的展開式問題時,

便相當於求解 $$x=(1+a)^{1/n}$$,亦即求解 $$x^n-(1+a)=0$$ 的實根。

當然,若 $$1+a$$ 為實數時,我們僅需前述方法(賈憲-霍納法)便能求得其近似數值解。

二項式定理的推廣(一): 負整數冪次

二項式定理的推廣(一): 負整數冪次
(The generalization of Binomial theorem(I):negative power)

臺北市立和平高中黃俊瑋教師

國中數學課程裡,介紹了兩個重要的乘法公式:$$(x\pm y)^2=x^2\pm 2xy+y^2$$。
到了高一上的「數與式」單元,將這二個公式推廣至指數為三次方的情況:

$$(x+y)^3=x^3+3x^2y+3xy^2+y^3$$  以及  $$(x-y)^3=x^3-3x^2y+3xy^2-y^3$$

到了高一下,在引進了組合相關概念後,便可一般性地討論二項式定理,將指數推廣至任意正整數次方的情況:

$${(x + y)^n} = C_0^n{x^n} + C_1^n{x^{n – 1}}y + \cdots + C_k^n{x^{n – k}}{y^k} + \cdots + C_n^n{y^n}$$

然而,當指數為有理數的情況呢?或負整數次方呢?例如 $$(x+y)^{\frac{1}{2}}$$、$$\sqrt{1\pm x}$$、$${(1 \pm x)^{ – 1}} = \frac{1}{{1 \pm x}}$$ 等問題,皆與二項式定理有關。一般在高中課程中並不特別討論其展開式。本文中,首先介紹指數為負整數的情況,接著,〈二項式定理的推廣(二):有理數冪次〉一文中,繼續介紹指數為有理數的情況。

多項式函數圖形的巨觀與微觀(Global and Local Perspectives of the Graphs of Polynomial Functions)

多項式函數圖形的巨觀與微觀(Global and Local Perspectives of the Graphs of Polynomial Functions)
國立中央大學數學系單維彰副教授/國立中央大學數學系單維彰副教授責任編輯

摘要:闡明多項式函數的圖形,巨觀而言由首項決定,微觀而言由其泰勒形式的低次項決定。

所謂「巨觀」是指當函數 $$y=f(x)$$ 的自變數在一個頗大的範圍 $$-A\leq x\leq A$$ 之中的函數圖形,其中 $$A$$ 是一個「頗大」的正數。相對地,所謂「微觀」是指在某個給定的自變數 $$c$$「附近」的函數圖形,例如自變數在 $$c-\varepsilon\leq x\leq c+\varepsilon$$ 範圍之中,其中 $$\varepsilon$$(讀作epsilon)是數學文件中習慣用來表示「微小正數」的符號。

代數基本定理的引理(Lemma of Fundamental Theorem of Algebra)

代數基本定理的引理(Lemma of Fundamental Theorem of Algebra
國立中央大學數學系單維彰副教授/國立中央大學數學系單維彰副教授責任編輯

連結:代數基本定理

摘要:這裡將先前提及的「代數基本定理」的引理,給出一個完整的證明。

使得代數基本定理成立的最關鍵因素,是以下引理:

令 $$f(x)=a_nx^n+\cdots+a_1x+a_0$$ 是一個 $$n$$ 次複係數多項式函數,其中 $$n\ge 1$$。
若 $$f(z_0)\ne 0$$,則存在一個 $$z_0$$「附近」的複數 $$z_1$$ 使得 $$|f(z_1)|<|f(z_0)|$$。

Pages