分子與細胞

分子與細胞
【2014諾貝爾生醫獎特別報導】大腦GPS導航位置與網格細胞系統

【2014諾貝爾生醫獎特別報導】大腦GPS導航位置與網格細胞系統

John M. O’Keefe、May-Britt Moser、及Edvard I. Moser三位科學家,因發現大腦神經細胞能建立方位感與導航能力,共同榮獲2014 年諾貝爾生理學或醫學獎桂冠。此開創性的發現,對大腦如何呈現心智功能(mental function)及如何計算複雜的認知功能與行為,提供嶄新的觀點。 辨識與記憶所處環境及執行導航,大腦需具備環境的內在圖像及方向感。導航能力是大腦最複雜的功能之一,需整合多種感覺訊息、運動執行、記憶能力。這三位諾貝爾獎得主,徹底改變我們對大腦這些功能的理解。 O’Keefe發現海馬迴位置細胞(place cells),它能發出位置訊號及提供大腦空間記憶能力。Moser夫婦則發現緊鄰海馬迴(hippocampus)-內嗅皮質內側(medial entorhinal cortex)的網格細胞(grid cells),提供大腦內在座標系統(internal coordinate system)以執行導航。海馬迴位置細胞及內嗅皮質網格細胞,共同形成相連的神經細胞網絡,在空間地圖的計算及導航工作,扮演重要的角色。他們三者的工作攻變我們對基本認知功能的了解,且提供新的想法來解釋空間記憶的形成。

內噬作用

內噬作用 (Endocytosis)
國立臺灣師範大學生命科學系胡琬琳學士

內噬作用又可稱作胞吞作用,$$\mathrm{endo-}$$在胞內之意,$$\mathrm{-cytosis-}$$吞食之意,顧名思義大抵可解釋為吞入胞內。胞吞作用是一種物質不需穿越細胞膜而進入細胞內的運輸過程,因為大部分的重要物質(例如:蛋白質)為大分子且具有極性,無法任意穿過親水性的細胞質或是細胞膜運輸進入細胞內。藉由細胞膜的內凹以及細胞膜的融合使膜內產小囊泡,不同的產生囊泡運輸機制決定其為何種類型內噬作用。

早年衰老症候群(Hutchinson-Gilford progeria syndrome)

早年衰老症候群(Hutchinson-Gilford progeria syndrome)
國立臺灣大學生命科學所103學年碩士生陳偉民

班傑明的奇幻旅程故事中,男主角一出生就有著衰老的臉龐及身軀。在現實世界中有著相似的突變性疾病,有一群小孩子在出生後,身體便會出現衰老的病徵。

其中最為典型的疾病稱作早年衰老症候群(Hutchinson-Gilford progeria syndrome),簡稱早衰症。只有幾百萬分之一的機會得到此病,得病者在出生約一年左右便會出現發育遲緩或是類似老人的症狀,如動脈硬化、身軀小而虛弱。罹患此種疾病的小孩平均壽命小於 $$15$$ 歲。

fig1

早年衰老症候群:圖為罹患早衰症的一名女童(A)。病患體內細胞的細胞核形狀扭曲變形(C),與正常的細胞核形狀差異很大(B)。
(來源:Scaffidi, P. (2005). The Cell Nucleus and Aging: Tantalizing Clues and Hopeful Promises. Plos Biology. 3(11): e395. oi:10.1371/journal.pbio.0030395)

造血作用(Hematopoiesis)

造血作用(Hematopoiesis)
國立臺灣大學生命科學系何亞軒碩士

脊椎動物體內,所有種類的血球細胞,包含了淋巴球、單核球、紅血球、血小板等,都是源自於具有多功能性(multi-potent)的造血幹細胞(hematopoietic stem cell, HSC)特化而成。造血幹細胞普遍存在於生物體的骨髓、肝臟,以及臍帶血當中,主要有兩個重要的功能,分別為「自我更新(self-renewal)」,以及「細胞特化(lineage commitment)」。

57136_p1

造血作用 (圖片來源:翻譯自Hematopoiesis simple. http://en.wikipedia.org/wiki/Haematopoiesis#mediaviewer/File:Hematopoiesis_simple.svg)

自我更新(self-renewal),是指幹細胞能不斷分裂,並永久保持在俱有分化成其他種類細胞的能力。造血幹細胞在體內,由於不斷的進行自我更新,因此,能夠源源不絕地產生動物體所需的各類型血球細胞。

分子與細胞
【2014諾貝爾生醫獎】發現大腦裡空間記憶的構築細胞

【2014諾貝爾生醫獎】發現大腦裡空間記憶的構築細胞

2014年諾貝爾生理與醫學獎報導:發現大腦裡空間記憶的構築細胞
國立臺灣大學生命科學系范姜文榮編譯/國立臺灣大學科學教育發展中心責任編輯

編譯來源:  The Nobel Prize in Physiology or Medicine 2014 Press Release

我們如何知道位在何處?如何找到從一個地點到另一地點的路徑?如何能儲存這些訊息,以便下次能迅速找到相同路徑?今年的諾貝爾生理與醫學獎得主,他們發現大腦內部GPS,使我們能定位空間所在位置,並證實腦部有些神經細胞,負責高階認知功能。

Wnt訊息傳遞路徑

Wnt訊息傳遞路徑 (Wnt signaling pathway)
國立臺灣大學生命科學系碩士班01級岳威廷

Wnt 蛋白質最早被發現在果蠅的突變品系,這群果蠅的表現型為缺翅型,也因此把此種品系命名為 wingless,而此缺失的蛋白質就被命名為 wingless,但後來經研究發現此基因其實和小鼠的原致癌基因(proto oncogene) int 為同源基因,因此就將這同一群基因命名為 Wnt superfamily。

Wnt 訊息傳遞路徑在動物的分子演化過程中屬於高度保守,目前科學家總共發現 $$13$$ 種不同種類的 Wnt 蛋白質,每種 Wnt 在生物體扮演的角色都不同,而不同種類的 Wnt 蛋白質也會開啟不同的 Wnt 訊息傳遞路徑。

根據路徑開啟時 $$\beta$$-catenin參與的有無,Wnt 訊息傳遞路徑可被分類為典型 Wnt 傳遞路徑(canonical Wnt pathway)及非典型 Wnt 訊息傳遞路徑(non-canonical Wnt pathway),而非典型傳遞路徑又可再被細分為細胞平面極性路徑(cell-planer polarity pathway)以及鈣離子路徑($$\mathrm{Ca^{2+}}$$ pathway)。

胚胎發育過程中的組織型變機制(The Mechanism of Tissue Morphogenesis during Embryo Development)

胚胎發育過程中的組織型變機制(The Mechanism of Tissue Morphogenesis during Embryo Development)
國立臺灣大學動物學研究所98級陳政儀碩士

動物的體制,由簡單的細胞,以不同立體方向組合構成組織、器官,最後建構成完整個體。細胞分裂參與了大部分的發育過程,而有方向性的細胞分裂能夠使組織向外延伸,改變個體的構型。另外相鄰細胞與細胞之間的相對位置改變,同樣扮演著型塑體態的重要角色。發育過程的組織型變主要以三種方式完成:細胞移動(cell migration)、細胞形狀改變(cell shape change)、細胞排序改變(cell rearrangement)(圖一)。

fig1

圖一、型態生成過程中的細胞移動方式。A:細胞移動(cell migration)。B:細胞形狀改變(cell shape change)。C:細胞排序改變(cell rearrangement)。(Wallingford, Fraser, & Harland, 2002)

活性氮(Reactive Nitrogen Species)

活性氮(Reactive Nitrogen Species)
國立臺灣師範大學生命科學系黃盟元博士

$$\mathrm{NO}$$ 主要的生物化學反應有氧化、硝化(加入 $$\mathrm{NO_2}$$)、亞硝化(加入 $$\mathrm{NO^+}$$)及亞硝基化($$\mathrm{NO}$$)幾種。

生物學家在一氧化氮($$\mathrm{NO}$$)及其代謝產物的深入研究中,提出了一個新名詞「活性氮(RNS)」,RNS 包括各種各樣從 $$\mathrm{NO}$$ 所衍生而出的物質,就像活性氧(ROS)一樣,RNS的產生來自生物自由基的相互作用。

自由基與活性氧化物 ─ 下

自由基與活性氧化物 (Free radical & reactive oxygen species) 下
臺中市雙十國中自然領域王淑卿教師

連結:自由基與活性氧化物(Free radical & reactive oxygen species) 上

人體每天約需 $$2000$$~$$3600$$ 仟卡的能量供生命活動之需,能量來源是粒線體內進行的呼吸作用。在這氧化產能過程中會自然產生的許多自由基,在年輕時,體內因有較好的自由基中和系統,自由基造成的影響較小。然而,自由基修補系統的功能隨著年紀增加逐漸下降,體內因此較容易遭受自由基傷害。

常見自由基對人體造成的傷害有如下:

  1. 高血壓、動脈硬化症、腦血栓、心肌梗塞等心血管疾病:自由基造成低密度脂蛋白(LDL,俗稱壞膽固醇)的氧化,產生脂質過氧化自由基堆積在動脈內,導致心肌梗塞與中風。
  2. 白內障:光化學的變化產生自由基,造成水晶體的氧化,引起水晶體的脂肪質與蛋白質病變,而形成白內障。
  3. 癌症:自由基導致基因突變,造成細胞的惡性繁殖或腺體分泌異常。
  4. 老化:自由基與細胞內的大分子如 DNA、蛋白質、脂質、細胞、組織等結合,造成外表皮膚失去光澤及彈性,並出現皺紋,或者體內生理機能的退化,而導致衰老。
  5. 其他慢性病:如糖尿病、骨質疏鬆症、關節炎、痛風、腎臟病、肝病、腎臟病、肝病、阿茲海默症(老年痴呆症)、帕金森氏症、前列腺病變、性能力下降、免疫功能下降、甚至 AIDS 的感染與發作,均證實與自由基有密切關聯。

自由基與活性氧化物 ─ 上

自由基與活性氧化物 (Free radical & reactive oxygen species) 上
臺中市雙十國中自然領域王淑卿教師

自由基(free radical)又稱游離基或稱活性氧化物(reactive oxygen species, ROS),是指能獨立存在並具有一個或一個以上不成對電子的離子、原子或分子。

生物組織細胞必須仰賴粒線體進行呼吸作用以獲得能量,在氧化的反應過程約有 \(2\sim 3\%\) 的氧氣會變成活性氧化物。氧氣在代謝過程會因多得到一個電子不成對而形成極活潑不穩定的超氧化物自由基(superoxide radical)。

Pages