卡丹諾

三次方程式的根式解

三次方程式的根式解
臺北市立西松高中數學科蘇惠玉老師

1545 年,義大利的一位醫生兼數學家卡丹諾(Gerolamo Cardano, 1501-1576)出版了《大技術Ars Magna or The Rules of Algebra》,首次向世人展示了如何求解三次與四次方程式的完整過程。然而三次方程式的根式解,如同許多數學上的偉大成就一般,無法只歸功於卡丹諾一人,甚至在其公開的過程中,為了優先權之爭,還引起公開挑戰、言語攻訐、陰謀策劃等等,算是數學史發展上相當具有社會史色彩的一頁。

各式聯立方程組的程序性解法 (1):麥克勞林與卡丹諾(Different Procedural Resolutions of Linear Equations: Maclaurin’s and Cardano’s Works)

各式聯立方程組的程序性解法 (1):麥克勞林與卡丹諾
(Different Procedural Resolutions of Linear Equations: Maclaurin’s and Cardano’s Works)

國立臺南第一高級中學數學科林倉億老師

摘要:本文介紹麥克勞林在其《代數學》中所呈現的二元、三元一次聯立方程組的解公式,它們等價於克拉瑪公式。另外還介紹了卡丹諾在《大技術》中相當於二元一次聯立方程組的程序性解法。

麥克勞林的公式

麥克勞林 (Colin Maclaurin, 1698~1746)在27歲的時候獲得牛頓 (Newton)的推薦擔任愛丁堡大學數學教授一職,將一生都奉獻給了故鄉蘇格蘭。在他死後兩年 (1748年)才出版的著作《代數學》(Treatise of Algebra)中,也有今日所謂的「克拉瑪公式」,他利用解方程式的方式,得出下列的公式:

$$\left\{ \begin{array}{l} ax + by = c\\ dx + ey = f \end{array} \right.\Rightarrow \left\{ \begin{array}{l} x =\displaystyle \frac{{ce – bf}}{{ae – db}}\\ y =\displaystyle \frac{{af – dc}}{{ae – db}} \end{array} \right.$$

$$\left\{ \begin{array}{l} ax + by + cz = m\\ dx + ey + fz = n\\ gx + hy + kz = p \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x =\displaystyle \frac{{ekm – bfm + bcn – bkn + bfp – cep}}{{aek – abf + dbc – dbk + gbf – gce}}\\ y =\displaystyle \frac{{afp – akn + dkm – dep + gcn – gfm}}{{aek – abf + dbc – dbk + gbf – gce}}\\ z =\displaystyle \frac{{aep – abn + dbm – dbp + gbn – gem}}{{aek – abf + dbc – dbk + gbf – gce}} \end{array} \right.$$

虛數√-1的誕生-下(The Origin of Imaginary Number √-1)

虛數$$\sqrt{-1}$$的誕生-下(The Origin of Imaginary Number$$\sqrt{-1}$$)
台北市立第一女子中學數學科蘇俊鴻老師/國立臺灣師範大學數學系洪萬生教授責任編輯

連結:虛數√-1的誕生-上

在〈虛數 $$\sqrt{-1}$$ 的起源〉(上) 一文中,我們看到卡丹諾利用立方體來論證三次方程解法的正確性。在這樣的看法下,方程式的「根」代表著邊長。因此,需要開一個負數的平方根,代表著這個問題是無解,沒有實際意義的。

卡丹諾在處理二次方程時,便是這樣的想法。當他考慮將 $$10$$ 分成兩個數,且兩數乘積為 $$40$$ 的問題,即 $$x(10-x)=40\Rightarrow x^2+40=10x$$,就清楚地提到:「這種情形或問題是不可能的。」不過,他仍可用二次公式得到兩個解 $$5+\sqrt{-15}$$ 和 $$5-\sqrt{-15}$$。

同時,他也指出:我們若「能放下心中的折磨」,直接計算兩數的乘積,便能得到 $$25-(-15)=40$$,符合原來題設。他無法說出這件事的意義何在,只好利用「算術就是這麼精巧又不中用。」的說法來交待。因此,卡丹諾對於出現 $$x=\sqrt[3]{2+\sqrt{-121}}+\sqrt[3]{2-\sqrt{-121}}$$ 的現象,也是採取迴避的策略吧。

虛數√-1的誕生-上(The Origin of Imaginary Number √-1)

虛數$$\sqrt{-1}$$的誕生-上(The Origin of Imaginary Number$$\sqrt{-1}$$)
新北市中正國中數學科陳鳳珠老師/國立臺灣師範大學數學系洪萬生教授責任編輯

一般人都知道虛數 $$\sqrt{-1}$$ 是方程式 $$x^2+1=0$$ 的根,在合理的推論之下,虛數 $$\sqrt{-1}$$ 應該是誕生在二次方程的解法之中才是。如果你也這樣以為,那麼,數學史家的研究結果,絕對出乎你的意料之外!

在數學發展過程中,早期數學家面對方程式 $$x^2+1=0$$ 時,和我們現在的國中數學課本處理方式一樣,他們認為這樣的方程式是無解,當然,也就無須發明一個數,來表示方程式 $$x^2+1=0$$ 的根。不過,當我們回顧虛數 $$\sqrt{-1}$$ 誕生的故事時,便會認同數學史家的觀點,也就是說:虛數 $$\sqrt{-1}$$ 並非誕生在二次方程式的解法之中,而是在解三次方程時現身。