物質狀態

奈米冰的存在解開水在4度C具有最大密度之謎

奈米冰的存在解開水在4度C具有最大密度之謎
東京大學黃郁珊博士/東京大學陳藹然博士

地球在宇宙中有藍色行星的美稱,因為地球表面被大範圍的水覆蓋,同時水也是地球生命的重要組成。儘管多年以來人類對水進行大量且深入的研究,液體水仍有許多異常現象尚未被完全理解,例如大家都學過:水在 \(4^\circ C\) 擁有最大密度,但是卻一直無法好好解釋這個眾所週知的現象。由國立交通大學濵口宏夫講座教授領軍,臺灣與日本的合作團隊,觀察到水在低溫下形成奈米尺寸的微冰晶,可能是造成水的最大密度異常現象原因。

【2016年諾貝爾物理獎特別報導】物質在平面世界裡的奇異現象

【2016年諾貝爾物理獎特別報導】物質在平面世界裡的奇異現象

物質在平面世界裡的奇異現象 (Strange phenomena in matter’s flatlands)
高瞻計畫特約編譯 葉承効/國立臺灣大學物理學系講座教授 郭光宇責任編輯

今年獲獎的研究開啟了一扇大門,讓人看到未知世界裡物質的新奇形態。2016的諾貝爾物理獎一半由華盛頓大學的大衛・索勒斯(David J. Thouless),另一半則由普林斯頓大學的鄧肯・哈爾丹(F. Duncan M. Haldane)及布朗大學的麥克・克斯特利茲(J. Michael Kosterlitz)共享此殊榮。他們的研究為人類理解物質的奧秘帶來突破性的發展,也為新穎材料的研發開創了新的前景。

大衛・索勒斯、鄧肯・哈爾丹及麥克・克斯特利茲使用了先進的數學方法,來解釋物質在異常狀態(如超導體、超流體或磁性薄膜)下出現的奇異現象。相較於真實世界的三維空間(包括長、寬、高的空間),克斯特利茲與索勒斯研究二維平面世界里發生的現象,即在物體的表面,或是極薄的介面上所出現的現象。而哈爾丹則研究極為纖細的、甚至可以視為一維空間的線狀物質。

3D 有趣實驗:大氣壓力與水沸騰

3D 有趣實驗:大氣壓力與水沸騰
國立臺北教育大學自然科教育系 周金城副教授

前言

在平地一大氣壓下,水的沸點大約是攝氏一百度;但在高山地區,山上氣壓較小,水的沸點因此也較低,水在不到攝氏一百度就可以沸騰了!本實驗將利用抽氣罐模擬山上壓力較低的環境,讓已沸騰的水在沒有持續加熱冷卻的情況下,能夠再次沸騰。

實驗影片

3D 有趣實驗:大氣壓力與水沸騰,開啟YouTube影片後,若設備允許,可以開啟最高解析度。右下角可以選擇2D或開啟3D。若開啟3D,選項有並排或紅藍等3D效果選項,請依您的設備選取適當格式。

3D有趣的實驗:大氣壓力的力量

3D有趣的實驗:大氣壓力的力量
國立臺北教育大學自然科教育系 周金城副教授

前言

一莫耳的水18克,體積約18毫升,100℃的水加熱變成100℃的水蒸氣,體積可達30586毫升,體積膨脹1700倍。當我們在奶粉罐裡加入少許的水加熱使其沸騰,此時將鐵罐密封起來,水在沸騰後變成水蒸氣時體積膨脹最高可達1700倍。相反的,當水蒸氣變成水時,體積縮小1700倍。於充滿水蒸氣的鐵罐外澆冷水讓奶粉罐降溫,裡面的水蒸氣因為降溫凝結成水,體積也縮小1700倍,體積瞬間縮小,導致奶粉罐外的大氣壓力的擠壓,使瓶內往內收縮而變形。

實驗影片

3D 有趣實驗:神奇的大氣壓力,上傳Youtube網站,

開啟YouTube影片後,若設備允許,可以開啟最高解析度。右下角可以選擇2D或開啟3D。若開啟3D,選項有並排或紅藍等3D效果選項,請依您的設備選取適當格式。

絕對壓力

絕對壓力 (Absolute Pressure)
國立臺灣大學物理學系 曾奕晴

壓力的定義

在物理學上,壓力 (\(\mathrm{P}\), Pressure) 的定義為物體在單位面積上所受的正向力。用數學式表達即為 \(P=\frac{F}{A}\),其中 \(F\) 為作用之正向力,\(A\) 為表面積。

壓力有許多不同的單位表示方法,其中常用的有標準大氣壓 (\(\mathrm{atm}\))、帕斯卡 (\(\mathrm{Pa}\), pascal)、巴 (\(\mathrm{bar}\))、托 (\(\mathrm{torr}\))、公分水銀柱 (\(\mathrm{cm-Hg}\)),以及 \(\mathrm{PSI}\)(磅/平方英吋)。

標準狀況下理想氣體與真實氣體間的熵值差-以SO2為例(二)

標準狀況下理想氣體與真實氣體間的熵值差-以SO2為例(二)
The entropy difference between the ideal gas and real gas under standard condition – a case study in SO2 (II)

國立臺灣師範大學化學系兼任教師 邱智宏

連結:標準狀況下理想氣體與真實氣體間的熵值差-以SO2為例(一)

二、伯特洛方程式和臨界點

欲求出不同氣態物質在伯特洛方程式中的 $$a$$、$$b$$ 數值,則需對此方程式稍作瞭解。現以水蒸氣為例,以壓力對莫耳體積作圖,在 $$200^\circ C$$ 時,會出現一段水平線(NLJ),即體積減小壓力不變,此時開始有氣體凝結為液體,當溫度愈高時,水平的部分逐漸減短,到 $$374^\circ C$$ 時,水平線成為一點$$(C)$$,此點稱為臨界點( critical point ),此時液、氣間的界面消失,此點的溫度及壓力分別為臨界溫度$$(T_c)$$及臨界壓力$$(p_c)$$。

標準狀況下理想氣體與真實氣體間的熵值差-以SO2為例(一)

標準狀況下理想氣體與真實氣體間的熵值差-以SO2為例(一)
The entropy difference between the ideal gas and real gas under standard condition – a case study in SO2 (I)

國立臺灣師範大學化學系兼任教師 邱智宏

純物質的焓(enthalpy)、自由能(Gibbs free energy)及熵(entropy)是化學熱力學經常要使用到的數據,因此一般化學教科書均會將一些常見物質的相關數據,表列在附錄中,以供參考及使用。但是這些數據是如何求得的?卻鮮少被討論,尤其表列純物質的熵,若在標準狀態下為氣體,則其設定的情況為該氣體為理想氣體。

事實上理想氣體的標準莫耳相對熵$$(S^\circ_{m,id})$$和真實氣體的標準莫耳相對熵$$(S^\circ_{m,re})$$是不一樣的,它們之間的差距是多少?本文擬以 $$\mathrm{SO_2}$$ 為例,利用熱力學的公式,按部就班的推導它們之間的差異,除了讓學子利用所學,真正應用在解決問題上,也期盼學子能感受到在計算過程中數學所扮演的重要角色。

標準狀況下理想氣體與真實氣體間的焓值差-以C2H6為例 (一)

標準狀況下理想氣體與真實氣體間的焓值差-以C2H6為例 (一)
The enthalpy difference between the ideal gas and real gas under standard condition – a case study in C2H6 (I)

國立臺灣師範大學化學系兼任教師 邱智宏

熱力學的主要內容除了三大定律及相關公式外,最常被討論到就是一些狀態函數(state function),而其中經常被使用到的數值,就是純物質的焓(enthalpy)、自由能(Gibbs free energy)及熵(entropy),因此一般化學教科書均會將一些常見物質的相關數據,表列在附錄中,以供參考及使用。

晶格能

晶格能 (Lattice enthalpy)
國立臺灣師範大學化學系 趙崇瀚

陰離子與陽離子之間存在庫倫作用力彼此吸引,由於此種異性電荷之間的作用力非常強,比一般的凡德瓦力大得很多,故離子化合物大多是以離子晶體的形式存在。因此當陰陽離子結合形成特定晶體時,其焓值改變量決定了晶體的穩定性
,故可以定義晶格能(\(\Delta H_L\))為:一特定離子晶體分解成其組成的氣態陰陽離子的焓值改變量(式一)。在此定義下,晶格能之值恆為正值,即代表破壞晶格所需的能量大小。

Pages