算幾不等式的證明(II)(Inequality of arithmetic and geometric means)

Print Friendly

算幾不等式的證明(II)(Inequality of arithmetic and geometric means)
國立蘭陽女中數學科陳敏晧老師

連結:算幾不等式的證明(I)

已知:\(a_1,a_2,…,a_n\) 為正數或零。

求證:

\(\displaystyle\frac{{{a_1} + {a_2} + … + {a_n}}}{n} \ge \sqrt[n]{{{a_1}{a_2}…{a_n}}}\),“\(=\)” 成立時若且唯若,\(a_1=a_2=…=a_n\)。

(其中 \(\displaystyle\frac{{{a_1} + {a_2} + … + {a_n}}}{n}\) 稱為算術平均數,\(\sqrt[n]{{{a_1}{a_2}…{a_n}}}\) 稱為幾何平均數)。

除了常見的倒回的證明外(先證 \(n=2=2^1\) 再推論 \(n=4=2^2\),然後反推 \(n=3\),接著證明 \(n=8=2^3\),然後反推 \(n=5,6,7\) 等),在此處筆者再介紹兩種直接證明方法。

第一種代換法:

\(n=2\),證明 \(\displaystyle\frac{{{a_1} + {a_2}}}{2} \ge \sqrt {{a_1}{a_2}}\) (不再贅述)

\(n=3\),證明 \(\displaystyle\frac{{{a_1} + {a_2} + {a_3}}}{3} \ge \sqrt[3]{{{a_1}{a_2}{a_3}}}\),

可令 \(\displaystyle{a_3} = \frac{{{a_3} + \sqrt[3]{{{a_1}{a_2}{a_3}}}}}{2}\),利用兩數的算幾不等式性質,即

\(\begin{array}{ll}\displaystyle\frac{\displaystyle{\frac{{{a_1} + {a_2}}}{2} + \frac{{{a_3} + \sqrt[3]{{{a_1}{a_2}{a_3}}}}}{2}}}{2}&\ge \sqrt {\left( {\displaystyle\frac{{{a_1} + {a_2}}}{2}} \right)\left( {\frac{{{a_3} + \sqrt[3]{{{a_1}{a_2}{a_3}}}}}{2}} \right)}\\&\ge \sqrt {\sqrt {{a_1}{a_2}} \sqrt {{a_3}\sqrt[3]{{{a_1}{a_2}{a_3}}}} }\\&= \sqrt[3]{{{a_1}{a_2}{a_3}}}\end{array}\)

左右兩式整理得 \(\displaystyle\frac{{{a_1} + {a_2} + {a_3}}}{2} + \frac{{\sqrt[3]{{{a_1}{a_2}{a_3}}}}}{2} \ge 2\sqrt[3]{{{a_1}{a_2}{a_3}}}\),

移項得 \(\displaystyle\frac{{{a_1} + {a_2} + {a_3}}}{3} \ge \sqrt[3]{{{a_1}{a_2}{a_3}}}\),得證,等號成立的地方就請讀者自行檢驗。

這個神乎其技的證明方式令人眼花瞭亂,姑且稱之為「代換法」,所以,我們再試一次,

\(n=4\),證明 \(\displaystyle\frac{{{a_1} + {a_2} + {a_3} + {a_4}}}{4} \ge \sqrt[4]{{{a_1}{a_2}{a_3}{a_4}}}\),利用兩數及三數的算幾不等式性質,

\(\displaystyle\frac{{\displaystyle\frac{{{a_1} + {a_2} + {a_3}}}{3} + \frac{{{a_4} + \sqrt[4]{{{a_1}{a_2}{a_3}{a_4}}} + \sqrt[4]{{{a_1}{a_2}{a_3}{a_4}}}}}{3}}}{2}\\\ge\displaystyle \sqrt {\left( {\frac{{{a_1} + {a_2} + {a_3}}}{3}} \right)\left( {\frac{{{a_4} + \sqrt[4]{{{a_1}{a_2}{a_3}{a_4}}} + \sqrt[4]{{{a_1}{a_2}{a_3}{a_4}}}}}{3}} \right)}\\\ge \sqrt {\sqrt[3]{{{a_1}{a_2}{a_3}}}\sqrt[3]{{{a_4}{{\left( {\sqrt[4]{{{a_1}{a_2}{a_3}{a_4}}}} \right)}^2}}}}\\= \sqrt[4]{{{a_1}{a_2}{a_3}{a_4}}}\)

,左右兩式整理得 \(\displaystyle\frac{{{a_1} + {a_2} + {a_3} + {a_4} + 2\sqrt[4]{{{a_1}{a_2}{a_3}{a_4}}}}}{3} \ge 2\sqrt[4]{{{a_1}{a_2}{a_3}{a_4}}}\),

移項得 \(\displaystyle\frac{{{a_1} + {a_2} + {a_3} + {a_4}}}{4} \ge \sqrt[4]{{{a_1}{a_2}{a_3}{a_4}}}\),

有了這兩次的經驗後,最後我們根據數學歸納法將 \(n=k\) 擴及到 \(n=k+1\),

\(\displaystyle\frac{\displaystyle{\frac{{{a_1} + … + {a_k}}}{k} + \frac{{{a_{k + 1}} + \sqrt[{k + 1}]{{{a_1}{a_2}…{a_{k + 1}}}} + … + \sqrt[{k + 1}]{{{a_1}{a_2}…{a_{k + 1}}}}}}{k}}}{2}\\\ge\sqrt {\left(\displaystyle{\frac{{{a_1} + … + {a_k}}}{k}} \right)\left( {\frac{{{a_{k + 1}} + \sqrt[{k + 1}]{{{a_1}{a_2}…{a_{k + 1}}}} + … + \sqrt[{k + 1}]{{{a_1}{a_2}…{a_{k + 1}}}}}}{k}} \right)}\\\ge \sqrt {\sqrt[k]{{{a_1}{a_2}…{a_k}}}\sqrt[k]{{{a_{k + 1}}{{\left( {\sqrt[{k + 1}]{{{a_1}{a_2}….{a_{k + 1}}}}} \right)}^{k – 1}}}}}\\= \sqrt {{a_1}^{\frac{1}{k}(1 + \frac{{k – 1}}{{k + 1}})}{a_2}^{\frac{1}{k}(1 + \frac{{k – 1}}{{k + 1}})}…{a_k}^{\frac{1}{k}(1 + \frac{{k – 1}}{{k + 1}})}{a_{k + 1}}^{\frac{1}{k}(1 + \frac{{k – 1}}{{k + 1}})}}\\= \sqrt[{k + 1}]{{{a_1}{a_2}…{a_k}{a_{k + 1}}}}\)

,左右兩式整理得 \(\displaystyle\frac{{{a_1} + {a_2} + … + {a_{k + 1}} + \left( {k – 1} \right)\sqrt[{k + 1}]{{{a_1}{a_2}…{a_{k + 1}}}}}}{k} \ge 2\sqrt[{k + 1}]{{{a_1}{a_2}…{a_{k + 1}}}}\),

移項得 \({a_1} + {a_2} + … + {a_{k + 1}} \ge \left( {k + 1} \right)\sqrt[{k + 1}]{{{a_1}{a_2}…{a_{k + 1}}}}\),

最後,\(\displaystyle\frac{{{a_1} + {a_2} + … + {a_{k + 1}}}}{{k + 1}} \ge \sqrt[{k + 1}]{{{a_1}{a_2}…{a_{k + 1}}}}\),得證。

這個證明巧妙地使用代換方法(substitution method),十分令人激賞。

第二種微分法:

我們可以使用微分方法,

首先考慮函數 \(\displaystyle{f}\left( x \right) = \frac{{{a_1} + {a_2} + … + {a_n} + x}}{{n + 1}} – {\left( {{a_1}{a_2}…{a_n}x} \right)^{\frac{1}{{n + 1}}}},x > 0\),

其中 \(a_1,a_2,…,a_n\) 為正數或零,算幾不等式的等價證明為 \(\forall x>0,~f(x)\ge 0\),

因此,先將函數 \(f(x)\) 微分,得 \(\displaystyle{f'(x)}= \frac{1}{{n + 1}} – {\left( {{a_1}{a_2}…{a_n}} \right)^{\frac{1}{{n + 1}}}}\frac{1}{{n + 1}}{x^{\frac{1}{{n + 1}} – 1}}\),

考慮 \(f'(t)=0\),得 \(1 = {\left( {{a_1}{a_2}…{a_n}} \right)^{\frac{1}{{n + 1}}}}{t^{\frac{{ – n}}{{n + 1}}}}\),即 \({t^{\frac{n}{{n + 1}}}} = {\left( {{a_1}{a_2}…{a_n}} \right)^{\frac{1}{{n + 1}}}}\),

最後得 \(t = {\left( {{a_1}{a_2}..{a_n}} \right)^{\frac{1}{n}}}\),此為 \(a_1,a_2,…,a_n\) 的幾何平均數。

再將 \(f'(x)\) 微分,得

\(\begin{array}{ll}\displaystyle f”(x) &=\displaystyle- {\left( {{a_1}{a_2}…{a_n}} \right)^{\frac{1}{{n + 1}}}}\frac{1}{{n + 1}}\left( {\frac{{ – n}}{{n + 1}}} \right){x^{\frac{{ – n}}{{n + 1}} – 1}} \\&=\displaystyle {\left( {{a_1}{a_2}…{a_n}} \right)^{\frac{1}{{n + 1}}}}\frac{n}{{{{(n + 1)}^2}}}{x^{\frac{{ – 2n – 1}}{{n + 1}}}} > 0,\forall x > 0\end{array}\)

將 \(x=t\) 代入,則 \(f”(t)>0\),可見 \(f(t)\) 為相對極小值,

\(\begin{array}{ll}f\left( t \right)&=\displaystyle \frac{{{a_1} + {a_2} + … + {a_n} + {{\left( {{a_1}{a_2}…{a_n}} \right)}^{\frac{1}{n}}}}}{{n + 1}} – {\left[ {{a_1}{a_2}…{a_n}{{({a_1}{a_2}…{a_n})}^{\frac{1}{n}}}} \right]^{\frac{1}{{n + 1}}}}\\&=\displaystyle \frac{{{a_1} + {a_2} + … + {a_n}}}{{n + 1}} + \frac{{{{({a_1}{a_2}…{a_n})}^{\frac{1}{n}}}}}{{n + 1}} – {\left[ {{{\left( {{a_1}{a_2}…{a_n}} \right)}^{1 + \frac{1}{n}}}} \right]^{\frac{1}{{n + 1}}}}\\&=\displaystyle\frac{{{a_1} + {a_2} + … + {a_n}}}{{n + 1}} + \frac{{{{({a_1}{a_2}…{a_n})}^{\frac{1}{n}}}}}{{n + 1}} – {\left( {{a_1}{a_2}…{a_n}} \right)^{\frac{1}{n}}}\\&=\displaystyle\frac{n}{{n + 1}}\left[ {\frac{{{a_1} + {a_2} + … + {a_n}}}{n} – {{\left( {{a_1}{a_2}…{a_n}} \right)}^{\frac{1}{n}}}} \right] \ge 0\end{array}\)

這個式子成立是根據數學歸納法前 \(n\) 的條件,且等號成立於 \(a_1=a_2=…=a_n\),

而 \(t = {\left( {{a_1}{a_2}..{a_n}} \right)^{\frac{1}{n}}} = {a_1} = {a_2} = … = {a_n}\),

因此,除非 \(a_1=a_2=…=a_n=x\),否則 \(f(x)>0\),

即 \(\displaystyle\frac{{{a_1} + {a_2} + … + {a_n} + x}}{{n + 1}} > {\left( {{a_1}{a_2}…{a_n}x} \right)^{\frac{1}{{n + 1}}}}\),得證。

最後,練習一下國立台中一中99年數學資賦優異鑑定試題第九題:

已知 \(-1\le x \le \frac{3}{2}\),則當 \(x=k\) 時,\(f(x)=(x+1)^3(3-2x)^2\) 有最大值 \(m\),

試求 \((k,m)\) 數對?

參考解法:利用五數的算幾不等式,

\(\displaystyle\frac{\displaystyle{\frac{4}{3}(x + 1) + \frac{4}{3}(x + 1) + \frac{4}{3}(x + 1) + \left( {3 – 2x} \right) + \left( {3 – 2x} \right)}}{5} \ge \sqrt[5]{{{{\left[ {\frac{4}{3}(x + 1)} \right]}^3}{{\left( {3 – 2x} \right)}^2}}}\)

整理得 \(\displaystyle{2^5} \le \frac{{64}}{{27}}{(x + 1)^3}{(3 – 2x)^2}\),移項得 \(\displaystyle{f\left( x \right)}= {\left( {x + 1} \right)^3}{(3 – 2x)^2} \le \frac{{27}}{2}\),

所以,\(\displaystyle m=\frac{27}{2}\),等號成立時,\(\displaystyle\frac{4}{3}(x + 1) = 3 – 2x,\therefore x = k = \frac{1}{2}\),

得 \(\displaystyle\left( {k,m} \right) = \left( {\frac{1}{2},\frac{{27}}{2}} \right)\)。

連結: 算幾不等式的證明(III)

參考資料:

  1. http://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means

發表迴響

你的電子郵件位址並不會被公開。 必要欄位標記為 *


+ 8 = 13