有機化學

海上漏油事件的處理

海上漏油事件的處理 (Ocean Oil Spills Clean-up)
國立臺灣大學生態學與演化生物學研究所碩士 郭毓璞

電影《怒火地平線》改編自 2010 年墨西哥灣的鑽油平台「深水地平線」(Deepwater Horizon) 的海上公安意外,電影詳實的描述了所屬的英國石油公司以及鑽油平台管理者之間的矛盾以及誤判形勢導致平台爆炸的關鍵決策,事發後即時的救災應變雖然拯救了九成的人命,但隨著鑽油平台事故最後階段的切管封井失敗,也造成了有史以來最嚴重的海上漏油污染事件,據估計 2010 的 4 月到 7 月之間,總共洩漏了 320 萬桶石油,相當於目前全伊朗的單日產量。

雖然台灣附近的外海並沒有鑽油平台,但對於海上漏油事件也並不陌生,除了 2001 年知名的阿瑪斯號貨輪油污事件以外,近年也有過多次砂石船以及貨輪的擱淺漏油事件,2016 年三月的德翔貨輪擱淺於石門外海,九月更因莫蘭蒂颱風的影響,導致中國籍輪船於金門擱淺漏油,都引起許多民眾和環保人士關注。

有機化合物
【2016年諾貝爾化學獎特別報導】如何將分子變成機器

【2016年諾貝爾化學獎特別報導】如何將分子變成機器

如何將分子變成機器
林宇軒,曹一允,蔡蘊明合譯

2016年的諾貝爾化學獎頒給了Jean-Pierre Sauvage (索瓦),Sir J. Fraser Stoddart (史托達特爵士),和Bernard L. Feringa (費倫加),這是因為他們開發出了比頭髮還要細上千倍的分子機器,這是關於他們如何將化學分子連結在一起並設計出各種機器,包括微型電梯,馬達以及微型肌肉的故事。

你到底能製造出多小的機器?這是得過諾貝爾獎的費曼(Richard Feynman)在1984年的一個前瞻性的演講中一開始所提出的問題,費曼著名的事蹟就是他在1950年代對奈米科技發展所做的預測。赤著腳,上身穿著一件粉紅色的polo衫,下身是一條嗶嘰短褲,他轉過身來面對聽眾說道“現在讓我們來談談那個製造具有可移動的零件的微小機器的可能性吧”。

戴金氧化反應

戴金氧化反應(Dakin Oxidation)
國立師範大學化學所碩士 張依湄

74232_p0

圖一、Henry Drysdale Dakin(來源:參考資料 1)

亨利・德賴斯代爾戴金,Henry Drysdale Dakin (1880.3.12–1952.2.10),出生於英國倫敦,長期居住在美國,為一位生物化學家。[2] 戴金是家中排行第八最年幼的孩子,家中是以賣鋼鐵維生,在青少年時期時居住在英國的利茲市 (Leeds),大學也是在當地的利茲大學就讀,當時指導教授為 Julius Berend.Cohen [3],主修有機化學的同時也從事當時利茲市水質分析的研究,於 1901 年大學畢業。

氧氮環丙烷(下)

氧氮環丙烷(下)(Oxaziridine (II))
國立臺灣師範大學化學系碩士班 洪嘉駿

連結:氧氮環丙烷(上)

除了以氧氮環丙烷作為不對稱環氧化試劑外還有其他不對稱的環氧化方法,例如夏普萊斯不對稱環氧化反應 (Sharpless epoxidation)、雅各布森環氧化反應 (Jacobsen epoxidation) 和朱莉婭-科隆納環氧化反應 (Juliá — Colonna epoxidation)。可是上述的幾種反應都存在著一個缺點,就是為了達到位置選擇性必須先反應物加上特殊相對應的官能基:夏普萊斯不對稱環氧化反應要利用對烯丙醇,雅各布森環氧化反應是利用順式—雙取代的芳基鏈烯,而朱莉婭—科隆納環氧化反應則是需要 α — β 不飽和酮,不像氧氮環丙烷可以直接針對無附帶其他特殊官能基的烯烴做不對稱環氧化反應。

氧氮環丙烷(上)

氧氮環丙烷(上)(Oxaziridine (I))
國立臺灣師範大學化學系碩士班 洪嘉駿

氧氮環丙烷 (oxaziridine) 是由氮原子、氧原子和碳原子所組成的三員雜環有機化合物,也是合成反應中常用的親電試劑以及生產聯胺時會產生的中間物。氧和氮因為其電負度高的緣故一般來說常常作為親核試劑加成,但是由於氧氮環丙烷極高度的三員環環張力以及相對較弱的氮-氧鍵,所以此類化合物便作為親電試劑,也就是氧原子或是氮原子的提供者;氧氮環丙烷上的碳原子並不會被親電試劑直接加成,通常是直接與環上的氧原子或氮原子反應。

基連尼-費雪合成

基連尼-費雪合成 (Kiliani–Fischer Synthesis)
國立臺灣師範大學化學所碩士生 張依湄

基連尼—費雪合成 (Kiliani–Fischer synthesis),是指由兩位德國化學家先後提出合成單醣的方法。

73571_p1

圖一、Heinrich Kiliani(來源:參考資料[1])

73571_p2

圖二、Hermann Emil Fischer(來源:參考資料[2])

海因利希.基連尼 (Heinrich Kiliani, 1855.10.30 — 1945.2.25),出生在德國的烏茲堡,他在慕尼黑工業大學 Emil Erlenmeyer [3] 教授的指導下取得他的博士學位,於 1892 年最終取得了教授職,在慕尼黑工業大學時期主要研究醣類化學,他在醣類的基礎發展上有很大的貢獻。1897 年前往德國的弗萊堡大學擔任藥物化學的教授,1945 年逝世於德國弗萊堡。

含氧雜環(上)

含氧雜環(上)(Oxygen Heterocyclic Ring (I))
國立臺灣師範大學化學系碩士生 鍾長志

在有機化學領域中,雜環化合物 (heterocyclic compound, heterocycle),1扮演重要的角色。根據 IUPAC 的定義,雜環化合物為「在環形分子中,具有至少兩種不同的元素之環狀化合物」。而常見的有機雜環分子中,以含氧雜環、含氮雜環,含硫雜環最為常見,如圖一所示,而本篇將著重於介紹含氧三員~七員雜環及常見的製備方式。

73569_p1

圖一、基本的雜環化合物。(作者繪製)

五氧化二磷

五氧化二磷 (Phosphorus Pentoxide)
國立臺灣師範大學化學系碩士生 董柏廷

五氧化二磷(實驗式為 P2O5,分子式為 P4O10,圖一),又稱磷酸酐,其真實結構是以十氧化四磷的方式存在,為白色粉末或是晶體,熔點為 340oC,在 360oC 會昇華,極易潮解,具有強脫水能力與腐蝕性,是一種在有機反應中常見的脫水劑,但是同時具有高危險性,與有機物接觸有可能會有燃燒的危險,且在受熱或是遇水分解時,會放出腐蝕性氣體,故操作時要多加注意。1.2.3

根岸交叉耦合反應

根岸交叉耦合反應(Negishi Cross-coupling Reaction)
國立臺灣師範大學化學系博士生 林欣慧

背景介紹

73323_p1

圖一、根岸教授賢伉儷合影。(來源:參考資料 1)

本反應是由根岸英一(Ei-ichi Negishi,圖一)1 教授於 1976 年發表。根岸教授生涯致力於有機金屬的研究,因成功針對使用鎳或鈀催化的有機鹵烴 (organic halide) 交叉耦合反應進行改善,於 2010 年與鈴木章 (Suzuki Akira)、理察.赫克 (Richard Heck) 三人共同獲頒諾貝爾化學獎。此外,根岸教授所發表的研究成果亦有許多已成功應用在工業合成,本文將要介紹的反應也是其中之一。3,4

有機化合物中最重要的部分非屬碳—碳鍵結莫屬,因此有機化學家皆致力於研究 C–C 鍵結方法的開發。1972 年熊田誠 (Makoto Kumada) 教授及其研究團隊率先發表利用鎳或鈀催化格里納試劑 (Grinard reagent) 與有機鹵烴進行交叉耦合反應3(即熊田交叉耦合反應,Kumada cross-coupling,圖二)。

Pages